
Сборник задач по высшей математике 2 том
.pdfAHaJIOrH'IHO
M(X Iy) = !00X· f(x I y) dx.
- 00
Koppemll....IIIOHHbliii MOMeHT III K03lf>lf>1II4I11eHT KOppeml4111111
~)]jIH XapaKTepHCTHKH CBH3H MelK,IIy BeJlH'IHHaMHX H Y CJ1YlKHT 1COppeJIJI'4U-
O"lt"lt'btit MOMe"ltrn Kxy |
(HHa'le:1COSapUa'4"UJ1, COV(X, Y)), KOTOPbIit AIlH .n;HCKpeTHbIX |
|
C. B. BbI'IHCJ1HeTCHrro <p0pMYJIe |
|
|
|
n |
m |
Kxy = L |
L(xi - ax)· (Yj - ay)· pij; |
|
|
i=1 j=1 |
|
a AIlH HerrpepbIBHbIX - |
rro <popMYJIe |
!00 00
Kxy= !(x-ax)(y-ay)f(x,y)dXdy.
- 00 - 00
KOPPeJlHIJ;HOHHbIit MOMeHT y.n;06HO BbI'IHCJ1HTbrro <popMYJIe
Kxy = M(XY) - M(X) . M(Y).
ECJIH C. S. X U Y "lte3aSUCUM'bt, rno Kxy = 0 (cov(X, Y) = 0). TaKHM 06Pa30M, eCJ1H Kxy 1= 0, rno c. s. X U Y 3aSUCUM'bti B aTOM CJ1Y'IaeCJ1Y'IaitHbIeBeJlH'IHHbI
Ha3bIBaIOT 1Coppe.lluposa"lt"lt'btMu. B CJ1Y'IaeKxy = 0, c. B. X H Y Ha3bIBaIOT "lte1COp-
pe.llupOSa"lt"lt'btMU.
~K03g)(jjU'4Ue"ltrn 1CoppeJIJI'4uu TXY asyx c. s. X U Y eCTb 6e3pa3MepHaH BeJlH'IH-
Ha, orrpe.n;eJlHeMaH paBeHcTBoM
Kxy
TXY = axay '
r.n;e ax H a y - cpe.n;HeKBa.n;paTH'IeCKHeOTKJIOHeHHH COOTBeTCTBeHHO BeJlH'IHH X
HY. |
~ |
Koa<p<PHIJ;HeHT KOpPeJlHIJ;HH XapaKTepH3yeT CTerreHb JIHHeiiHoit 3aBHCHMOCTH |
|
CJ1Y'IaitHbIxBeJlH'IHHX |
H Y. |
CBOMCTBa K03c1>,lnu\MeHTa Koppemllfu1
1. |
-1 ,,;;; TXY ,,;;; 1; |
2. |
ECJ1H X H Y - He3aBHCHMbIe C. B., TO TXY = 0; |
3. |
ECJ1H c. B. X H Y CBH3aHbI JIHHeitHoit 3aBHCHMOCTbIO Y = aX + b, a 1= 0, TO |
ITxyl = 1; |
|
4. |
ECJ1H ITxyl = 1, TO C. B. X H Y CBH3aHbI JIHHeitHoit <PYHKIJ;HOHaJIbHOit 3aBH- |
CHMOCTbIO.
390

6.12.1. 3a,IJ,aHa Ta6JUIll;a pacrrpe)J,eJIeHH.H )J,HcKpeTHoil: )J,BYMepHoil: CJIyqail:- HOil: BeJIHqHHbI
X\Y |
1 |
2 |
3 |
1 |
0,16 |
0,12 |
0,08 |
2 |
0,28 |
0,11 |
0,25 |
Hail:TH:
a) 3aKOHbI pacrrpe)J,eJIeHH.H CJIyqail:Hblx BeJIHqHH X H Y;
6) <PYHKI.J;HIO pacrrpe)J,eJIeHH.H CHCTeMbI c. B. (X, Y).
o a) CJIyqail:HM BeJIHqHHa X rrpHHHMaeT )J,Ba 3HaqeHH.H: Xl = 1 H X2 = 2.
= [PH +Pl2 +P13] =
= 0,16 + 0,12 + 0,08 = 0,36, P2 = 0,28 + 0,11 + 0,25 = 0,64. CJIe)J,oBaTeJIbHO,
3aKOH pacrrpe)J,eJIeHH.H c. B. X (T. e. 6e3YCJIOBHblil: 3aKOH pacrrpe)J,eJIeHH.H KOMrrOHeHTbI X) MO:lKHO rrpe)J,CTaBHTb B BH)J,e
AHaJIOrHqHO rrOJIyqaeM 6e3YCJIOBHblil: 3aKOH pacrrpe)J,eJIeHH.H KOMrrOHeHTbI Y:
6) B COOTBeTCTBHH C <POPMYJIOil: F(x,y) = |
I: I: Pij rrOJIyqaeM: |
eCJIH X ~ 1 H Y ~ 1, TO F(x,y) = P{X < X, |
Xi<X Yj<Y |
Y < y} = 0, TaK KaK C06bITH.H |
|
{X < x} H {Y < y} B 9TOM CJIyqae .HBJI.HIOTC.H HeB03MO:lKHbIMH. |
|
AHaJIOrHqHO rrOJIyqaeM: |
|
eCJIH X ~ 1 H 1 < y, TO F(x, y) = 0; eCJIH 1 < X ~ 2 H Y ~ 1, TO F(x, y) = 0;
eCJIH 1 < x ~ 2 HI < Y ~ 2, TO F(x,y) = P{X = 1, Y = I} = 0,16; eCJIH 1 < x ~ 2 H 2 < y ~ 3, TO
F(x,y) = P{X = 1, Y = I} + P{X = 1, |
Y = 2} = 0,16 + 0,12 = 0,28; |
eCJIH 1 < x ~ 2 H 3 < y, TO |
|
F(x,y) = P{X = 1, Y = I} + P{X = 1, |
Y = 2} + P{X = 1, Y = 3} = |
|
= 0,16 + 0,12 + 0,08 = 0,36; |
eCJIH 2 < x H y ~ 1, TO F(x, y) = 0; |
|
eCJIH 2 < x H 1 < y ~ 2, TO |
|
F(x,y) = P{X = 1, Y = I} + P{X = 2, |
Y = I} = 0,16 + 0,28 = 0,44; |
eCJIH 2 < x H 2 < y ~ 3, TO |
|
F(x,y) = P{X = 1, Y = I} + P{X = 2, |
Y = I} + P{X = 1, Y = 2}+ |
+ P{X = 2, Y = 2} = 0,16 + 0,28 + 0,12 + 0,11 = 0,67; eCJIH 2 < x H 3 < y, TO F(x, y) = 0,16 + 0,28 + 0,12 + 0,11 + 0,08 + 0,25 = 1.
391

TaKHM 06pa30M, <PYHKIJ;H.H pacrrpe,l.l;eJIeHH.H ,l.l;aHHoil: CHCTeMbI ,l.l;HCKpeTHbIX CJIyqail:Hblx BeJIHqHH HMeeT BH,l.l;
|
|
rrpH |
y::::;1 1 <y::::;2 |
2 <y::::;3 |
3<y |
• |
|||
|
|
X::::; 1 |
° |
0,16° |
|
0,28° |
0,36° |
||
|
|
1 <x::::;2 |
|
||||||
|
|
2<x |
° |
0,44 |
|
0,67 |
1 |
||
6.12.2. |
3aKoH pacrrpe,l.l;eJIeHH.H CHCTeMbI° |
,l.l;HCKpeTHblx CJIyqail:Hblx BeJIHqHH |
|||||||
|
|
3a,l.l;aH Ta6JIHIJ;eil: |
|
|
|
|
|
|
|
|
|
X\Y |
1 |
2 |
3 |
|
4 |
|
|
|
|
1 |
0,10 |
0,15 |
0,04 |
0,06 |
|
|
|
|
|
2 |
0,12 |
0,08 |
0,05 |
0,04 |
|
|
|
|
|
3 |
0,03 |
0,02 |
0,11 |
D |
|
|
|
|
|
Hail:TH: |
|
|
|
|
|
|
|
|
|
a) 3HaqeHHe qHCJIa D; |
|
|
|
|
|
|
|
|
|
6) 6e3YCJIOBHble 3aKOHbI pacrrpe,l.l;eJIeHH.H CJIyqail:Hblx BeJIHqHH X |
|||||||
|
|
HY; |
|
|
|
|
|
|
|
|
|
B) BepO.HTHOCTH C06bITHil: {X = 1, Y ;;:: 2} H {X = Y}. |
|
||||||
6.12.3. |
,II;BYMepHa.H CJIyqail:HM BeJIHqHHa (X, Y) 3a,l.l;aHa 3aKOHOM pacrrpe- |
||||||||
|
|
,l.l;eJIeHH.H |
X\Y |
0,12° |
1 |
|
|
|
|
|
|
|
|
|
|
|
|||
|
|
|
°1 |
0,18 |
|
|
|
||
|
|
|
0,28 |
0,42 |
|
|
|
||
|
|
HaihH: |
|
|
|
|
|
|
|
|
|
a) <PYHKIJ;HIO pacrrpe,l.l;eJIeHH.H ,l.l;. c. B. X; |
|
|
|||||
|
|
6) <PYHKIJ;HIO pacrrpe.n;eJIeHH.H ,l.l;BYMepHoil: c. B. (X, Y); |
|
||||||
|
|
B) BepO.HTHOCTb C06bITH.H {X ::::; Y}. |
|
|
|
|
|||
6.12.4. |
IIo MHmeHH rrpOH3BO,l.l;HTC.H O,l.l;HH BbICTpeJI. BepO.HTHOCTb rrorra,l.l;a- |
||||||||
|
|
HH.H paBHa 0,75. IIYCTb |
c. B. X |
- |
qHCJIO rrOrra,l.l;aHHil:; c. B. Y - |
||||
|
|
qHCJIO rrpOMaXOB. CocTaBHTb Ta6JIHIJ;y COBMeCTHoro pacrrpe,l.l;eJIe- |
|||||||
|
|
HH.H BepO.HTHOcTeil: CJIyqail:Hblx BeJIHqHH X H Y. OrrHcaTb <PYHKIJ;HIO |
|||||||
|
|
pacrrpe,l.l;eJIeHH.H F(x,y) CHCTeMbI C.B. (X,Y). |
|
|
|||||
6.12.5. |
HcrroJIb3Y.H YCJIOBHe 3a,l.l;aqH 6.12.1, YCTaHOBHTb, 3aBHCHMbI HJIH |
||||||||
|
|
HeT KOMrrOHeHTbI X H Y. |
|
|
|
|
|
|
|
a YCJIOBHe He3aBHCHMOCTH c. B. X H Y B ,l.l;HCKpeTHOM CJIyqae HMeeT BH,l.l;: |
|||||||||
P{X = Xi, Y = Yj} = P{X = xil' P{Y = Yj} M.H JII06bIX i |
= 1,2, ... , n H |
||||||||
j |
= 1,2, ... , m. IIpOBep.HeM: rrYCTb Xl = 1 H YI = 1. IIo yCJIOBHIO |
|
|||||||
|
|
P{X = 1, |
Y = I} = 0,16, |
|
|
||||
a |
P{X = I} = 0,36, P{Y = I} = 0,44 (9TH |
BepO.HTHOCTH Hail:,l.l;eHbI B |
XO,l.l;e |
||||||
pemeHH.H 3a,l.l;aqH 6.12.1). IIOCKOJIbKY |
|
|
|
|
|
||||
|
P{X = 1, Y = I} = 0,16 1: 0,36'0,44 = P{X = I}· P{Y = I}, |
|
|||||||
TO OTCIO,l.l;a 3aKJIIOqaeM: KOMrrOHeHTbI CHCTeMbI (X, Y) 3aBHCHMbI. |
• |
392

6.12.6. 3a,n;aHo pacJIpe,D;eJIeHHe ,D;BYMepHoii CJlyqaiiHOii BeJIHqHHbI (X, Y) |
||||
X\Y 1 |
1,5 |
2 |
||
1 |
1 |
1 |
1 |
|
12 |
24 |
24 |
||
|
||||
2 |
1 |
1 |
1 |
|
12 |
24 |
24 |
||
|
||||
2,5 |
1 |
1 |
1 |
|
"3 |
"6 |
"6 |
||
|
||||
HaiiTH O,D;HOMepHble pacJIpe,D;eJIeHH.H KOMJIOHeHT CHCTeMbI. YCTaHo- |
||||
BHTb, 3aBHCHMbI JIH KOMJIOHeHTbI X 1'1 Y. HaiiTH P{X +Y ~ 3,5}. |
6.12.7. |
MCJIOJIb3Y.H YCJIOBHe |
3a,n;aqH 6.12.2, YCTaHOBHTb, 3aBHCHMbI HJIH |
||||
|
|
HeT CJIyqaiiHble BeJIHqHHbI X 1'1 Y. |
|
|||
6.12.8. |
|
3a,n;aHbI 3aKOHbI pacJIpe,D;eJIeHH.H ,D;ByX He3aBHCHMbIX ,D;pyr OT ,D;pyra |
||||
|
|
CJIyqaiiHbIX BeJIHqHH X 1'1 |
Y: |
|
|
|
|
|
Pi |
|
~P~.~·L-~~~~~~ |
||
|
|
OJIHCaTb <PYHKIJ;HIO paCJIpe,D;eJIeHH.H F(x, y) 1'1 BblqHCJIHTb ee 3Ha- |
||||
|
|
qeHHe B TOqKe (9,2; 8,5). |
|
|
|
|
6.12.9. |
|
3aKoH pacJIpe,D;eJIeHH.H CHCTeMbI ,D;HCKpeTHbIX CJIyqaiiHbIX BeJIHqHH |
||||
|
|
(X, Y) 3a,D;aH Ta6JIHu;eii |
|
|
|
|
|
|
X\Y |
-2 |
-1 |
0 |
1 |
|
|
-1 |
1 |
2 |
3 |
1 |
|
|
16 |
16 |
16 |
16 |
|
|
|
|
||||
|
|
0 |
2 |
3 |
1 |
0 |
|
|
16 |
16 |
16 |
||
|
|
|
|
|||
|
|
1 |
0 |
1 |
0 |
2 |
|
|
16 |
16 |
|||
|
|
|
|
|
||
|
|
HaiiTH: |
|
|
|
|
|
|
a) 6e3YCJIOBHble 3aKOHbI pacJIpe,D;eJIeHH.H CJIyqaiiHbIX BeJIHqHH X |
||||
|
|
HY; |
|
|
|
|
|
|
6) YCJlOBHblii 3aKOH pacJIpe,D;eJIeHH.H c. B. Y JIPH X = 0; |
||||
a a) |
|
B) JIpOBepHTb He3aBHCHMOCTb CJlyqaiiHbIX BeJIHqHH X 1'1 Y. |
||||
CJIyqaiiHM BeJIHqHHa X JIpHHHMaeT 3HaqeHH.H Xl = -1, X2 = 0, |
||||||
X3 = 1, |
BepO.HTHOCTH KOTOPbIX HaxO,D;HM CYMMHpoBaHHeM BepO.HTHOCTeii co- |
|||||
OTBeTCTBeHHO B JIepBoii, BTOpoii 1'1 TpeTbeii CTPOKax Ta6JIHU;bI: |
||||||
|
|
1231763 |
||||
|
|
Pl = 16 + 16 + 16 |
+ 16 = 16' |
P2 = 16' P3 = 16' |
CYMMHPY.H BepO.HTHOCTH B JIepBOM, BTOPOM, TpeTbeM 1'1 qeTBepTOM CTOJI6u;ax Ta6JIHu;aX, HaXO,D;HM BepO.HTHOCTH COOTBeTCTBYIOIII;HX 3HaqeHHii c. B. Y.
TaKHM o6pa30M, |
6e3YCJIOBHble 3aKOHbI paCJIpe,D;eJIeHH.H X 1'1 Y HMeIOT |
||||||||
BH,D;: |
|
|
1 |
|
Yi -2 -1 0 |
1 |
|||
Xi -1 0 |
, |
||||||||
Pi |
7 |
6 |
3 |
Pi |
3 |
6 |
4 |
3 |
|
16 |
16 |
16 |
|
16 |
16 |
16 |
16 |
||
|
|
|
393

6) Bep05lTHOCTH 3Ha'leHHfic. B. Y IIpH X = 0 Hafi)J,eM C IIOMOID;blO <poP-J
MyJIbI
TO
2 |
|
P{Y = -21 X = O} = 16 = ~ = ~, |
|
6 |
|
16 |
|
3 |
|
P{Y = -11 X = O} = 16 = ~ = ~, |
|
6 |
|
16 |
|
1 |
|
16 |
1 |
P {Y = 0 I X = 0} =""6 = 6' |
|
16 |
|
P{Y = 1 IX = O} = ~ |
= O. |
16 |
|
TaKHM o6pa30M, YCJIOBHblfi 3aKOH paclIpe)J,eJIeHH5I c. B. Y IIpH X = 0 HMeeT
BH)J, |
-2 |
-1 |
0 1 |
||
Yi |
|||||
Px=o |
1 |
1 |
1 |
0 |
|
3 |
2 |
6 |
|||
|
|
||||
B) TaK KaK 6e3YCJIOBHblfi H |
YCJIOBHblfi |
3aKOHbI paClIpe)J,eJIeHH5I C. B. Y |
He COBIIa,IJ,aIOT, TO CJIY'IafiHbleBeJIH'IHHbIX H Y 3aBHCHMbI. (B aTOM MO)l{HO
6bIJIO 6bI y6e)J,HTbC5I H «CTapbIM ClIoco6oM»:
1 |
7 |
3 |
= PiX = -I}· P{Y = -2}.) |
PiX = -1, Y = -2} = 16 |
-I 16 . 16 |
6.12.10. IIcIIOJIb3Y5I YCJIOBHe 3a,IJ,a'lH6.12.9, HafiTH YCJIOBHblfi 3aKOH pacIIpe)J,eJIeHH5I :
a) C.B. Y IIpH
B) C.B. X IIpH
X = -1; 6) C.B. X IIpH Y = -2;
Y = O.
6.12.11. 3a,IJ,aHa CHCTeMa )J,HCKpeTHbIX CJIY'IafiHbIXBeJIH'IHH(X, Y):
X\Y 10 20 30 50 0,15 0,30 0,15 100 0,10 0,05 0,25
HafiTH:
a) YCJIOBHblfi 3aKOH paclIpe)J,eJIeHH5I c. B. Y IIpH YCJIOBHH, 'ITOX =
= 100;
6) YCJIOBHblfi 3aKOH paClIpe)J,eJIeHH5I c. B. X IIpH YCJIOBHH, 'ITOY :::::
= 20.
HBJI5IIOTC5I JIH He3aBHCHMbIMH BeJIH'IHHbIX H Y?
394
6.12.12. IIcrroJIb3Y5I YCJIOBHe 3a,rr.a'lH6.12.1, HaitTH:
a) MaTeMaTH'IeCKHeO>KH)J,aHH5I M(X) H M(Y); 6) )J,HcrrepCHH D(X) H D(Y);
B) cpe)J,HeKBa)J,paTH'IeCKHeOTKJIOHeHH5I a(X) H a(Y).
o a) IIcrroJIb3Y5I <POPMYJIbI )J,JI5I BbI'IHCJIeHH5IMaTeMaTH'IeCKOrOO)ICH)J,aHH5I, npI:IBe)J,eHHble B Ha'laJIerraparpa<Pa, HaXO)J,HM M(X) H M(Y):
M(X) = XIPU + XIP12 + XIP13 + X2P21 + X2P22 + X3P23 =
= 1 . 0,16 + 1 ·0,12 + 1 ·0,08 + 2 . 0,28 + 2 . 0,11 + 2 . 0,25 = 1,64,
T. e. ax = M(X) = 1,64. AHaJIOrH'IHO
M(Y) = 1· 0,16 + 1· 0,28 + 2·0,12 + 2·0,11 + 3·0,08 + 3·0,25 = 1,89,
T. e. a y = M(X) = 1,89.
OTMeTHM, 'ITO,HaitM 6e3YCJIOBHble 3aKOHbI pacrrpe)J,eJIeHH5I CJIY'IaitHblx BeJIH'IHHX H Y (B 3a)J,a'le6.12.1 OHH Hait)J,eHbI), MO)ICHO HaitTH YKMaHHble
'IHCJIOBblexapaKTepHCTHKH, HCrrOJIb3Y5I «CTapble <POPMYJIbI»: |
|||
M(X) = 1· 0,36 + 2·0,64 = 1,64; |
M(Y) = 1· 0,44 + 2·0,23 + 3·0,33 = 1,89. |
||
6) Haxo)J,HM )J,HcrrepCHH D(X) H D(Y): |
|
||
D(X) = [tt,(Xi - ax )2 . Pij ] |
= |
|
|
= (1 - |
1,64)2 ·0,16 + (1 - |
1,64)2 ·0,12 + (1 - |
1,64)2 ·0,08+ |
+ (2 - |
1,64)2 ·0,28 + (2 - |
1,64)2 ·0,11 + (2 - |
1,64)2 ·0,25 = |
= 0,4096·0,36 + 0,1296 . 0,64 = 0,2304, |
T. e. D(X) = 0,2304. |
||
D(Y) = (1 - |
1,98)2 ·0,16 + (1 - |
1,89)2 ·0,28 + (2 - |
1,89)2 ·0,12+ |
+ (2 - |
1,89)2 . 0,11 + (3 - |
1,89)2 . 0,08 + (3 - |
1,89)2 ·0,25 = |
|
= 0,7921 ·0,44 + 0,0121 . 0,23 + 1,2321 ·0,33 = 0,7579. |
Hait)J,eM D(X) HHa'le, HCrrOJIb3Y5I 6e3YCJIOBHblit 3aKOH pacrrpe)J,eJIeHH5I c. B.
X: D(X) = [M(X2) - (M(X»2] = 1 . 0,36 + 22 ·0,64 - |
(1,64)2 |
= 0,2304. |
TO'IHOTaK )ICe |
|
|
D(Y) = [M(y2) - (M(y»2] = 12 ·0,44 + 22 .0,23 + 32 .0,33 - |
(1,89)2 = |
|
= 4,33 - |
3,5721 = 0,7579. |
|
B) Terrepb Y)lCe JIerKO HaitTH a(X) = JD(X) = JQ,2304 = 0,48 H a(Y) = |
||
::: VO;7579 ~ 0,87. |
|
• |
6.12.13. I1crrOJIb3Y5I YCJIOBHe 3a,rr.a'IH 6.12.3, HaitTH M(X), M(Y), D(X),
D(Y), a(X) H a(Y).
6.12.14. I1crrOJIb3Y5I YCJIOBHe 3a)J,a'lH6.12.6, HatiTH M(Y), D(Y), a(Y).
395

6.12.15. 3aKoH paCIIpe,l.l;eJIeHH5I ,l.l;BYMepHofi ,l.l;HCKpeTHofi CJIY'IafiHofiBeJIH- '1HHbI3a,l.l;aH Ta6JIHIJ;efi
X\Y |
-2 |
0,05° |
2 |
0,2 |
0,03 |
0,12 |
|
0,6 |
0,15 |
0,30 |
0,35 |
HafiTH YCJIOBHOe MaTeMaTH'IeCKOeQ)KH,l.l;aHHe M(X IY = 2). |
|||
Q ,ILrr51 HaXQ)K,l.l;eHH5I HCKOMOfi BeJIH'IHHbIBOCIIOJIb3yeMC5I <popMYJIofi |
|||
n |
|
|
|
M(X IY = Yj) = LXi' p(Xi IYj)' |
r,l.l;e p(Xi IYj) = P{X = Xi IY = Yj}. |
||
i=l |
|
|
|
Hafi,l.l;eM CHa'laJIaYCJIOBHblfi 3aKOH pacIIpe,l.l;eJIeHH5I KOMIIOHeHTbI X IIPH |
YCJIOBHH, 'ITOY = 2.
TaK KaK P{Y = 2} = 0,12 + 0,35 = 0,47, TO YCJIOBHblfi 3aKOH paCIIpe,l.l;e-
JIeHH5I C. B. X IIpH Y = 2 HMeeT BH,l.l; |
|
|
|
|||||
|
|
Xi |
|
0,2 |
0,6 |
|
|
|
|
|
PY=2 |
|
U,l~ |
U,J<> (CM. perneHHe 3a,l.l;a'lH6.12.9.) |
|
||
|
|
|
0,47 |
0,47 |
|
|
|
|
|
|
|
|
|
|
|
||
CTaJIO 6bITb, |
|
|
|
|
|
|
|
|
M(X IY = 2) = [X1P(Xl |
IY3) + X2P(X2 IY3)] = |
= 0,234 = 234 ,..., °498 |
||||||
|
=°2 . 0,12 |
°6 . 0,35 |
= 0,024 + 0,21 |
|||||
|
, |
047 +, |
047 |
047 |
047 |
470 "', |
, |
|
|
|
, |
|
, |
, |
, |
|
|
T. e. OKOH'IaTeJIbHOM(X IY = 2) ~ 0,498. |
|
|
• |
|||||
6.12.16. |
I1CIIOJIb3Y5I YCJIOBHe 3a,l.l;a'lH6.12.15, HafiTH: |
|
|
|||||
|
a) M(X); |
|
|
6) M(X I Y = 0); |
|
|
||
|
B) M(Y); |
|
|
r) M(Y IX = 0,2). |
|
|||
6.12.17. |
I1CIIOJIb3Y5I YCJIOBHe 3a,l.l;a'lH6.12.10, HafiTH |
|
|
|||||
|
M(Y I X = -1), M(X IY = -2), |
M(X IY = 0). |
|
|||||
6.12.18. |
I1CIIOJIb3Y5I YCJIOBHe 3a,l.l;a'lH 6.12.1, HafiTH KOppeJI5IIJ;HOHHblfi |
M0- |
||||||
|
MeHT Kxy (KoBapHaIJ;HIO) H K09<P<PHIJ;HeHT KOppeJI5IIJ;HH rXY. |
|
||||||
Q MaTeMaTH'IeCKHeQ)KH,l.l;aHH5I |
KOMIIOHeHT )')KeHafi,l.l;eHbI: ax = M(X) = |
|||||||
= 1,64; a y |
= M(Y) = 1,89 (CM. 3a,l.l;a'lY6.12.12). |
|
|
|
||||
,n:HcIIepCH5I H Cpe,l.l;HeKBa,l.l;paTH'IeCKOeOTKJIOHeHHe KOMIIOHeHT TaK)Ke H3· |
BeCTHbI: D(X) = 0,2304; D(Y) = 0,7579; a(X) = 0,48; a(Y) ~ 0,87 (3a,l.l;a'13 6.12.12).
Hafi,l.l;eM KOppeJI5IIJ;HOHHblfi MOMeHT K xy .
K XY ~ [t.t,(X; -a.)(y; - a,)p<;] ~
=(1-1,64)(1-1,89)·0,16+(1-1,64)(2-1,89)·0,12+(1-1,64)(3-1,89)·0,08+
+(2-1,64)(1-1,89) ·0,28+(2-1,64)(2-1,89)·0,11 +(2-1,64)(3-1,89) ·0,25 ==
=-0,64· (-0,0404) + 0,36 . 0,0404 = 0,0404.
396

Tenepb Haii)J,eM Kxy MHa'fe,MCIIOJIb3Y5I <POPMYJIY
Kxy = M(XY) - M(X) . M(Y) : Kxy = 1·1· 0,16 + 1· 2·0,12 + 1· 3·0,08 + 2 ·1· 0,28+
+ 2·2·0,11 + 2·3·0,25 - 1,64·1,89 = 3,16 - 3,0996 = 0,0404.
KaK BM)J,HO, BTOpoii cIIoco6 IIpOrn;e.
Haxo)J,MM K09<P<PMlI,MeHT KOppeJI5IlI,MM.
|
Kxy |
0,0404 |
|
TXY = a(X) . a(Y) = 0,48. 0,87 ~ 0,096732, |
|
T.e. TXY ~ 0,1. |
• |
|
6.12.19. |
IICIIOJIb3Y5I YCJIOBMe 3a)J,a'fM6.12.3, HaiiTM Kxy M TXY. |
|
6.12.20. |
IICIIOJIb3Y5I YCJIOBMe 3a)J,a'fM 6.12.9, HaiiTM OCHOBHble XapaKTepM- |
|
|
CTMKM M(X), M(Y), D(X), D(Y), Kxy, TXY )J,aHHoii CMCTeMbI |
|
|
CJIY'faiiHbIXBJIM'fMH(X, Y). |
|
6.12.21. |
COBMecTHoe pacIIpe)J,eJIeHMe CJIY'faiiHbIXBeJIM'fMHX M Y 3a)J,aHO |
|
|
IIJIOTHOCTblO pacIIpe)J,eJIeHM5I Bep05lTHOCTeii |
|
|
f(x, y) = {c. (y - |
xy), (x, y) ED, |
|
0, |
(x,y)¢D, |
|
r)J,e 06JIaCTb D = {(x,y) : 0 ~ x ~ 1, 0 ~ y ~ I}. HaiiTM: |
|
|
a) K09<P<PMlI,MeHT c; |
|
|
6) IIJIOTHOCTM pacIIpe)J,eJIeHM5I OT)J,eJIbHbIX KOMIIOHeHT X M Y; |
|
|
B) Bep05lTHOCTM IIOIIa)J,aHM5I CJIY'faiiHOiiTO'fKM (X, Y) B 06JIacTb |
|
|
Dl = {(x,y) : 0,7 ~ x ~ 3, 0 ~ y ~ 0,3}; |
|
|
r) COBMeCTHYIO <PYHKlI,MIO paCIIpe)J,eJIeHM5I F(x, y). |
|
|
y ________________ .A13 |
|
|
_____ ... A14 |
: |
|
I |
: |
|
I-m~~~ |
I |
|
|
I |
|
|
I |
|
Y |
I |
|
: |
0,3 ~~~:;;;;;t;;r;;;~~7:1
o x
Puc. 92
Q 06JIacTM D M Dl M306pruKeHbI Ha pMC. 92.
a) K09<P<PMlI,MeHT C Haii)J,eM M3 YCJIOBM5I HOPMMPOBKM:
!00 !00 f(x,y)dxdy = 1.
-00 -00
397
00 |
00 |
1 |
1 |
! |
! f(x,y)dxdy= !dx !c. y (l-x)dy= |
||
- 00 - 00 |
0 |
0 |
oTKy.n;a ~ = 1, T.e. c = 4.
6) HaxO.n;HM nJIOTHOCTH pacnpe.n;eJIeHHH KOMnOHeHT X H Y: |
|
||
00 |
1 |
2 |
1 |
h(x) = fx(x) = ! f(x,y) dy = !4y(1- X) dy = 4(1- x) . Y210 = 2(1- x), |
|||
- 00 |
0 |
|
|
T.e. |
|
|
|
fx(x) |
= {2(1- x), x E [0,1]' |
|
|
|
0, |
x tt [0,1]; |
|
00 |
1 |
(2) 1 |
|
h(Y)=fy(y)= ! f(x,y)dx= !4y(1-x)dx=4y X-~ |
10=2y, |
||
- 00 |
0 |
|
|
T.e. |
|
|
|
fy(y) = {2Y, |
Y E [0,1], |
|
|
|
0, |
y tt [0,1]. |
|
B) ,I1;JIH HaXO}l{.n;eHHH BepOHTHOCTH nOna.n;aHHH CJIY'IaitHoitTO'IKH(X, Y)
B 06JIacTb Dl BOCnOJIb3yeMcH <P0PMYJIOit
P{(X, Y) E D} = !!f(x, y) dxdy.
D
Tor.n;a
1 |
0,3 |
3 |
0,3 |
P{(X,Y)EDt}= !!f(x,y)dXdy= !dx !4(1-X)ydy+!dx !Ody=
|
Dl |
0,7 0 |
|
1 |
0 |
1 |
Y |
0,3 |
x 2 |
|
|
2 |
=2·0,09· |
() 1 |
|
||
=4 !(l-x)dx·-1 |
x -- |
I = |
|
||
0,7 |
2 |
0 |
2 |
o~ |
|
|
|
|
|
|
|
|
|
= 0,18 ( 1 - |
1 |
0,49) |
= 0,0981. |
|
|
"2 - 0,7 + |
-2- |
r) ,I1;JIH HaxO}l{.n;eHHH cOBMecTHoit <PYHKIJ;HH pacnpe.Q;eJIeHHH BOCnOJIb3Y-
eMCH <P0PMYJIOit
F(x,y) = !'" !Y f(u,v)dudv,
- 00 - 00
r.n;e x H y - JII06ble .n;eitcTBHTeJIbHble 'IHCJIa.
398

PacCMOTPMM B03MOlKHble IIOJIO)KeHM5I TO'lKM(x, y) Ha IIJIOCKOCTM:
1) eCJIM TO'lKa(x, y) paclIOJIO)KeHa BO II 'IeTBepTM(x < 0, y > 0), JIM60 B III (x < 0, y < 0), JIM60 B IV 'IeTBepTM(x > 0, y < 0), TO F(x, y) = 0, TaK KaK TaM BCIO,rr,y f(x,y) = 0;
2)eCJIM TO'lKa(x, y) paCIIOJIO)KeHa B I 'IeTBepTM,TO OHa HaXO)J,MTC5I JIM60:
(a)BHYTPM 06JIacTM D (Ha pMC. 92 9TO TO'lKaM 1 ); (6) ClIpaBa OT 06JIacTM D,
npM'IeMy ::::; 1 (TO'lKaM 2 ); (B) ClIpaBa OT 06JIacTM D, IIpM'IeMy > 1 (TO'lKa
M3); (1') Ha,IJ, 06JIacTbIO D, IIpM'IeMx ::::; 1 (TO'lKaM4).
B cJIY'Iae(a) MMeeM |
|
|
|
|
|
|
x |
y |
x |
|
y |
|
|
F(x,y) =4 1 du |
1(I-u)vdv=4/(I-u) du lvdv= |
|||||
-00 |
-00 |
0 |
0 |
|
|
|
= 4 J(1 - u) du· y; = 2y2 (u - ~) I: = 2y2 (x - |
x;) = xy2(2 - x); |
|||||
o |
|
|
|
|
|
|
B CJIY'Iae(6) IIOJIY'IaeM |
|
|
|
|
|
|
|
y |
1 |
~. |
2 |
Y |
= y2; |
F(x,y) = 41vdv 1(1- u) du = 4· |
v |
10 |
||||
|
o |
|
|
2 |
|
|
|
0 |
|
|
|
|
|
|
1 |
1 |
|
2 |
1 |
= 1; |
F(x, y) = 41vdv j(1- u) du = 4· |
~ . v |
10 |
||||
|
o |
|
|
2 |
|
|
|
0 |
|
|
|
|
|
11, HaKOHeI.J;, B cJIY'Iae(1'): |
|
|
|
|
|
F(x, y) = 4 J(I- u) du jv dv = 4· ~ (u - ~2) I: = 2 (x - x;) = x(2 - x).
|
o |
0 |
|
|
|
TaKMM 06pa30M, |
x < 0, y < °MJIM X < 0, y > °MJIM X > 0, |
|
|||
|
0, |
y < 0, |
|||
F(x,y) = |
xy2(2 - x), |
(x,y) ED, |
|
|
|
y2, |
0::::; |
y::::; 1, |
x> 1, |
|
|
|
x(2 - x), |
0::::; |
x::::; 1, |
y> 1, |
|
|
1, |
x> 1, Y > 1. |
|
||
6.12.22. |
I1CIIOJIb3Y5I |
pe3YJIbTaTbI, |
IIOJIY'IeHHble IIpM peIIIeHMM |
3a,IJ,a'lM |
|
|
• |
6.12.21, HaiiTM:
a) 'IaCTHble<PYHKI.J;MM paclIpe.n;eJIeHM5I CJIY'IaiiHbIXBeJIM'IMH,BXoMIIIMX B CMCTeMY c. B. (X, Y);
6) Bep05lTHOCTb IIOIIa,IJ,aHM5I CJIY'IaiiHoiiTO'lKMB IIp5lMOYI'OJIbHMK
Dl C BepIIIMHaMM B TO'lKaX(0,7;0), (0,7;0,3), (3;0,3), (3;0) (pMc.92).
399