Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Сборник задач по высшей математике 2 том

.pdf
Скачиваний:
68
Добавлен:
15.03.2015
Размер:
27.38 Mб
Скачать
I',n;e q

6.10.57. 3MaHa IIJIOTHOCTb paCIIpe.IJ:eJIemUI c. B. X:

O,

x < 0,

f(x) = { 0,1,

°~ x < A,

0,2,

A ~ x < 2A,

0,

2A~ x.

HaATH A, M(X) H D(X).

6.10.58. "(ITo MO:>KHO CKa3aTb 0 MaTeMaTHQeCKOM O:>KH.IJ:aHHH c. B. X, 3MaHHoii IIJIOTHOCTblO paCIIpe.IJ:eJIeHHH

x E~?

§11. BA>KHEl1WlI1E PACnPEAEl1EHlI1S1 Cl1Y'-IAl1HbIX BEl1l11 '-I1I1H

Ba)l(Heliiwllle AIIICKpeTHble pacnp~eneHIIIH

~ 1. )J,lfCKpeTHaH CJIY'Iai!:HaH BeJIlf'llfHa lfMeeT 6U'HOMUa.l!'b'lWe pacnpeiJe.l!e'Hue

(lfJIlf pacnpe,n;eJIeHa no 6lfHOMlfaJIbHOMY 3aKOHY), eCJIlf OHa nplfHlfMaeT 3Ha'leHlfH:

0,1,2,.... , n C COOTBeTCTBYIOIIJ;lfMlf BepOHTHOCTHMlf:

Pm=P{X=m}=C;::·pm.qn-m, I',n;e O<p<l, q=l-p, m=0,1,2, ... ,n.

$

MaTeMaTlf'leCKOeOJKlf,n;aHlfe If ,n;lfcnepClfH c. B. X, lfMeIOIIJ;ei!: 6lfHOMlfaJIbHOe pac-

npe,n;eJIeHlfe, HaxO,n;HTCH no q,0pMYJIaM:

M(X) = np, D(X) = npq.

1'13q,OPMYJIbI BepHYJIJIlf CJIe.n;yeT, 'ITOC. B. X - '1lfCJIOnOHBJIeHlfi!: C06bITlfH A

B ceplflf lf3 n He3aBlfClfMbIX lfcnbITaHlfi!: (P(A) = p) - pacnpe,n;eJIeHa no 6lfHOMlfaJIbHOMY 3aKOHY.

~ 2. )J,lfcKpeTHaH CJIY'Iai!:HaHBeJIlf'llfHalfMeeT pacnpeiJe.l!e'Hue IIyacco'Ha (lfJIlf pacnpe,n;eJIeHa no 3aKOHY IIyaccoHa), eCJIlf OHa nplfHlfMaeT C'IeTHOe '1lfCJIO 3Ha- '1eHlfi!::0,1,2, ... , m ... , C cooTBeTcTBYIOIIJ;lfMlf BepOHTHOCTHMlf

.

am. e- a

 

 

Pm=P{X=m}=

m."

I',n;e m=0,1,2, ... ; a=np.

$

MaTeMaTlf'leCKOe OJKlf,n;aHlfe If ,n;lfcnepClfH c. B. X, lfMeIOIIJ;ei!: pacnpe,n;eJIeHlfe

IIyaccoHa, HaxO,n;HTCH no q,0pMYJIaM:

 

 

 

M(X) = a,

D(X) = a.

 

Pacnpe,n;eJIeHlfe IIyaccoHa HBJIHeTCH npe,n;eJIbHbIM MH 6lfHOMlfaJIbHOI'O, eCJIlf '1lfCJIOonbITOB n YCTpeMJIHeTCH K 6eCKOHe'lHOCTlf,a BepOHTHOCTb C06bITlfH p CTpeMlfTCH K HYJIIO, nplf'leMlfX npolf3Be,n;eHlfe np = a OCTaeTCH nOCTOHHHbIM. IIplf 3TlfX

YCJIOBlfHX (T.e. n-+oo, p-+O, np=a=const) BepOHTHOCTb P{X=m}=C;::pmqn-m,

= 1 - p, Haxo,n;lfMaH no q,0pMYJIe BepHYJIJIlf, CTpeMlfTCH K BepoHTHoCTlf

370

HMeeT pa6'HOMep'HOe pacnpeiJeJle'Hue
zeOMempU"'I.eC1COe pacnpeiJeJle'Hue,
3a1CO?t peiJ1Cux co6'b1mui1..
m -a
~,
m.

HaXO,ll;HMoil: no 3aKOHY IIyaccoHa. II09ToMY pacnpe,ll;eJleHHe IIyaccoHa rrpH6JIHEeHHO 3aMeHHeT 6HHOMHaJIbHOe pacnpe,ll;eJleHHe B eJIY'lae, KOr,ll;a '1HeJIO orrbITOB BeJlHKO, a BepOHTHOCTb C06b1THH A B KaJK,II;OM H3 HHX MaJIa. C 9THM CBH3aHO eIIle O,ll;HO Ha3BaHHe pacnpe,ll;eJleHHe IIyaccoHa -

~ 3. )l;HcKpeTHaH eJIY'lail:HaHBeJlH'IHHaHMeeT

eCJIH OHa npHHHMaeT C'IeTHOe'1HCJIO3Ha'leHHiI::1,2, ... , m, ... C cooTBeTcTBYJOIII;HMH BepoHTHOCTHMH:

pm = PiX = m} = qm-l . p, r,ll;e m = 1,2, ... , °< p < 1, q = 1- p. ~

)l;.nH c. B. X, HMeJOIII;eil: reOMeTpH'IeCKOepacnpe,ll;eJleHHe

1

M(X) = P'

CJIY'lail:HYJOBeJlH'IHHY,pacnpe,ll;eJleHHyJO no reoMeTpH'IecKoMY 3aKoHY, MOE-

HO HHTepnpeTHpoBaTb KaK '1HCJIOm onbiTOB (HcnblTaHHiI:), npOBe,ll;eHHblX no cxeMe

BepHYJ1J1H ,11;0 nepBoro nOJIOEHTeJJbHOrO HCXO,ll;a.

Ba)l(Heiiiwllle HenpepblBHble pacnpE!AeneHIIIR

~ 4. HenpepbIBHaH eJIY'lail:HaHBeJIH'IHHaX

'Ha ompe31Ce [a;b], eeJIH ee nJIOTHOCTb BepoHTHoCTH I(x) nOCTOHHHa Ha 9TOM oTpe3Ke, a BHe ero paBHa HYJIJO:

I(x)={b~a'

npH

x E [a,b],

0,

npH

x f. [a, b].

TOT <paKT, 'ITOC. B. X pacnpe,ll;eJleHa paBHOMepHO, 3anHCbIBaJOT KOPOTKO TaK:

X ~ R[a,b].

K CJIY'Iail:HblMBeJlH'IHHaM,HMeJOIII;HM paBHOMepHoe pacnpe,ll;eJleHHe, OTHOCHTCH Te c. B., 0 KOTOPblX H3BeCTHO, 'ITOBce HX 3Ha'leHHHJIeEaT BHYTPH HeKOToporo npoMeEYTKa [a, b] H npH 9TOM O,ll;HHaKOBO B03MOEHbI. HanpHMep, BpeMH OEH,II;aHHH TpaHcnopTa, OIIIH6Ka, nOJIY'IaJOIII;aHCHOT oKpyrJIeHHH pe3YJIbTaTa H3MepeHHH ,11;0

6JIHEail:IIIero U;eJloro '1HeJIa,H T.,II;.

<lIYHKU;HH pacnpe,ll;eJleHHH F(X),II;J1H paBHOMepHO pacnpe,ll;eJIeHHoil: C. B. X HMeeT

BH,II;

 

O'

npH x ~ a,

F(x) = { x -a,

b _ a

1,

npH

a < x ~ b,

npH

b < x.

qHeJIOBble xapaKTepHcTHKH paBHOMepHoro pacnpe,ll;eJleHHH:

M(X) = a~b,

D(X) = (b - a)2

 

12

 

371

~ 5. HenpephIBHaJI CJIyqaitHaJI BeJlHqHHa X HMeeT n01Ca3ameJlb?toe (rum 31Ccno· ?teHquaJlbHoe) pacnpe,ll;eJleHHe, eCJIH ee IIJIOTHOCTb BepOHTHOCTH HMeeT BH,II;

f(x) = {.>... e->"",

npH

x ~ 0,

 

 

0,

npH

x < 0,

r,ll;e .>.. > °- napaMeTp ,ll;aHHOrO pacnpe,ll;eJleHHH.

cIIYHXD:HH pacnpe,ll;eJleHHH c. B. X, pacnpe,ll;eJleHHoit no nOXa3aTeJlbHoMY 3aKOHY, HaXO,ll;HTCH no q,0pMYJIe

F(x) = {1 -e->"",

0,

npH

x

~o,

npH

x

< 0.

BaliCHeitmHe qHCJIOBble XapaKTepHCTHxH 9Toro pacnpe,ll;eJleHHH Onpe,ll;eJlHIOTCH paseHcTBaMH:

1

u(X) = 1.

M(X) = X,

 

.>..

~ 6. HenpepblBHaJI CJIyqaitHaH BeJlHqHHa X HMeeT ?topMaJlb?toe pacnpeiJeJle?tue

(roBopHT TaKlKe, 'ITOOHa pacnpe,ll;eJleHa no HOPMaJIbHOMY 3aKOHY HJIH no 3aXOHY raycca), eCJIH ee nJIOTHOCTb HMeeT BH,II;

(x - a)2 f(x) = __1_ .e-~

u·V2-K

rpa<PHX q,YHXD:HH f(x) Ha3b1BaeTCH 1Cpu6oit raycca (pHC. 89).

f(x)

x

Puc. 89

TOT q,aKT, 'ITOC. B. X pacnpe,ll;eJleHa no HOPMaJIbHOMY 3aXOHY, 3anHChIBaIOT XOpOTXO, Tax: X ,..... N(a, u).

IIapaMeTpbl a H u npe,ll;CTaBJIHIOT co6oit COOTBeTCTBeHHO MaTeMaTHqeCXOe OlKH- ,ll;aHHe H cpe,ll;HexBa,II;paTHqeCXOe OTXJIOHeHHe c. B. X, T. e.

a = M(X), u = u(X).

372

ECJIH a = °H 0' = 1, T. e. c. B. X ,.." N(O, 1), TO COOTBeTCTBYIOw;ee HOpMaJIbHOe pacnpe,ll;eJleHHe Ha3blBaeTCH cma'itiJapm'lt'b£.M. ~YHKU;HH pacnpe,ll;eJleHHH .II.JlH TaxOil: CJIyqail:Hoil: BeJlHqHHbl HMeeT BH,ll;

II 06JIa,ll;aeT (nOMHMO 06blqHblX CBOil:CTB <PYHKU;HH pacnpe,ll;eJleHHH) CBOil:CTBOM

~(x) + ~(-x) = 1, x E R.

B 60JIee 06w;eM CJIyqae (X ,.." N(a, 0'» <PYHKU;HH pacnpe,ll;eJleHHH HOpMaJIbHOrO 3aKOHa BbipalKaeTCH <P0PMYJIOil:

'" (t - a)2

F(x) = u~ j e- 2T dt = ~ (X -;, a) = 0,5 + ~o (X -;, a) ,

- 00

~o(x) = _1_. je'" -zt2 dt

-J2;o

-Ha3blBaeTCH tjjy'lt1{;v,uefj, JIanliaca (HHOr,ll;a <PYHKU;Heil: JIanJIaca Ha3blBaIOT <PYHK- U;HIO

 

J:rr

j'"e- t2 dt).

 

 

o

<PYHKU;HH JIanJIaca 06JIa,ll;aeT CJIe,ll;yIOW;HMH cBoil:cTBaMH:

1)

~o(-x) = -~o(x), T.e. <PYHKU;HH

~o(x) - HeqeTHaH. OTCIO,ll;a, B qaCTHOCTH,

CJIe,ll;yeT, qTO ~o(O) = OJ

 

2)

~o(+oo) = 0,5.

 

Ta6JIHIJ;y 3HaqeHHiI: <PYHKU;HH JIanJIaca MO)KHO lfail:TH B npHJIO)KeHHH 2.

CBH3b <PYHKU;HH ~(x) C <PYHKU;Heil: JIanJIaca ~o(x) BblpalKaeTCH <P0PMYJIOil:

~(x) = 0,5 + ~o(x).

BepOHTHOCTb nOna,ll;aHHH HOPMaJIbHO pacnpe,ll;eJleHHoil: CJIyqail:Hoil: BeJlHqHHbl B 3a,J:J:aHHblil: HHTepBaJI (a, (3) Onpe,ll;eJlHeTCH <POPMYJIOil:

 

f3- a )

(a-a)

(f3- a )

 

(a-a)

P{a<X<f3}=~ ( -0'-

-~ -0'- =~o

-0'-

-~o -0'- .

BepOHTHOCTb nOna,ll;aHHH c. B. X ~ N(a,u) B HHTepBaJI (a -

c, a + c), CHMMe-

TPHqHblil: OTHOCHTeJlbHO u;eHTpa pacceHHHH a, HaxO,ll;HTCH no <p0pMYJIe

P{ a -

c < X < a + c} = P{IX - al < c} = 2~o (~) = 2~ (~) - 1.

B qacTHOCTH,

P{IX - al < 3u}

~ 0,9973, T. e. npaxTHqeCKH

,ll;OCTOBepHO, qTO

c. B. X ~ N(a,u) npHHHMaeT CBOH 3HaqeHHH B npOMe)KYTKe (a -

30', a + 30'). 3To

YTBep)K,ll;eHHe Ha3blBaeTCH «npaBHJIOM Tpex CHrM».

373

llycTb X -

6.11.1.20% H3,Il;eJIHiI:, BbIIIycKaeMblx ,Il;aHHbIM npe,Il;npHHTHeM, H)')K,Il;aIOTCg

B ,Il;OnOJIHHTeJIbHoil: perYJIHpOBKe. HaY,Il;aqy oT06paHo 150 H3,Il;eJIHiI:. Hail:TH Cpe,Il;Hee 3HaqeHHe H ,Il;HCnepCHIO CJIyqail:Hoil: BeJIHqHHbI X - qHCJIa H3,Il;eJIHiI: B BbI60pKe, HY)K,Il;alOllJHXCH B perYJIHpOBKe.

<) B ,Il;aHHOM cJIyqae MbI HMeeM ,Il;eJIO co cxeMoil: HcnbITaHHiI: BepHYJIJIH, no9TOMY c. B. X HMeeT 6HHOMHaJIbHOe pacnpe,Il;eJIeHHe. IIcnoJIb3YH <P0PMYJIbI

M(X) = np H D(X) = npq, HaXO,Il;HM (npH n = 150, p = 0,2, q = 0,8)

 

M(X) = 150·0,2 = 30, D(X) = 150·0,2·0,8 = 24.

6.11.2. Hail:TH Cpe,Il;Hee qHCJIO JIOTepeil:Hblx 6HJIeTOB, Ha KOTopble Bbma- )1;JT BbIHrpbIlliH, eCJIH npH06peTeHo 20 6HJIeTOB, a BepOHTHOCTb BblHrpbIllia O,Il;HOrO 6HJIeTa paBHa 0,1. Hail:TH ,Il;HCnepCHIO qHCJIa

ycnexoB B ,Il;aHHOM onbITe.

6.11.3. llpoBo)1;HTCH 3 He3aBHCHMbIX HCnbITaHHH, B K~,Il;OM H3 KOTOPbIX BepOHTHOCTb HacTynJIeHHH HeKOToporo C06bITHH nOCTOHHHa H paB-

Ha p. qHCJIO nOHBJIeHHiI: C06bITHH A B 9TOM onbITe. Hail:TH D(X), eCJIH H3BeCTHO, qTO M(X) = 2,1.

6.11.4. BepoHTHoCTb nop~eHHH u;eJIH npH O,Il;HOM BbICTpeJIe paBHa 0,4.

CKOJIbKO Ha)1;O npOH3BeCTH BbICTpeJIOB, qT06bI MO)KHO 6bIJIO O)KH-

,Il;aTb B Cpe,Il;HeM 80 nOna)1;aHHiI: B u;eJIb?

6.11.5. llpoBepHeTcH napTHH H3 10000 H3,Il;eJIHiI:. BepoHTHoCTb TOro, qTO H3,Il;eJIHe OK~eTCH 6paKOBaHHbIM, paBHa 0,002. Hail:TH MaTeMaTHqeCKOe O)KH,Il;aHHe H ,Il;HCnepCHIO qHCJIa 6paKoBaHHblx H3,Il;eJIHiI: B 9TOil: napTHH. Hail:TH BepoHTHoCTb Toro, qTO B napTHH eCTb XOTH

6bI O,Il;HO 6PaKOBaHHOe H3,Il;eJIHe.

<) l..JHCJIO onbITOB

(n =

10000) ,Il;OCTaTOqHO BeJIHKO, a BepoHTHoCTb (p =

= 0,002) «ycnexa»

B K~,Il;OM H3 HHX MaJIa, n09ToMY MO)KHO CqHTaTb, qTO

CJIyqail:HM BeJIHqHHa X -

qHCJIO 6paKOBaHHblx H3,Il;eJIHiI: - pacnpe,Il;eJIeHa

no 3aKOHY llyaccoHa: ee B03MO)KHble 3HaqeHHH 0,1,2, ... , 10000, a COOTBeTCTBYlOllJHe BepoHTHoCTH BblqHCJIHIOTCH no <popMYJIe

ame- a

Pm = P{X = m} = --,-.

m.

llo <popMYJIe a = np onpe,Il;eJIHeM napaMeTp a H MaTeMaTHqeCKOe O)KH-

,Il;aHHe c. B. X:

M(X) = a = 10000·0,002 = 20.

,1l;HcnepcHH qHCJIa 6paKoBaHHblx H3,Il;eJIHiI: paBHa

D(X) = npq = 10000·0,002·0,998 = 19,96,

T.e. M(X) ~ D(X). lloJIaI'MM(X) = D(X) = 20, HaxO,Il;HM npH6JIH)KeHHO HCKOMYIO BepoHTHoCTb C06bITHH A = {B napTHH CO,Il;ep)KHTCH XOTH 6bI O,Il;HO 6paKoBaHHoe H3,Il;eJIHe}:

P(A) = 1 -

-

PlOOOO(O) = 1-

200 .

e-20

=

 

P(A) = 1 -

O!

 

 

 

 

= 1 -

e- 20

 

= 1 - 2,06 . 10-9 ~ 1.

374

6.11.6.,I:LHcKpeTHM CJIY'IafiHMBeJIH'IHHaX pacnpe.n;eJIeHa no 3aKoHY IIyaccoHa C napaMeTpoM a = 0,324. HafiTH MaTeMaTH'IeCKOeO)KH-

.n;aHHe H cpe.n;HeKBa.n;paTH'IeCKOeOTKJIOHeHHe 9TOfi CJIY'IafiHOfiBeJIH'IHHbI.

6.11.7.B Mara3HH OTnpaBJIeHbI 1000 6YTbIJIOK MHHepaJIbHOfi BO.n;bI. Bepo-

.HTHOCTb Toro, 'ITOnpH nepeB03Ke 6YTbIJIKa OKa)KeTC.H pa36HTOfi, paBHa 0,002. HafiTH:

a) cpe.n;Hee 'IHCJIOPa36HTbIX 6YTbIJIOK;

6) BepO.HTHOCTb Toro, 'ITOMara3HH nOJIy'IHT60JIee .n;ByX pa36HTbIX

6YTbIJIOK.

6.11.8.Co06meHHe co.n;ep)KHT 1000 CHMBOJIOB. BepO.HTHOCTb HCKa)KeHH.H o.n;Horo CHMBOJIa paBHa 0,004. HafiTH cpe.n;Hee 'IHCJIOHCKa)KeHHbIX CHMBOJIOB; HafiTH BepO.HTHOCTb Toro, 'ITO6y.n;eT HCKa)KeHO He 60JIee 3-x CHMBOJIOB.

6.11.9.IIpoH3Bo.n;HTC.H CTpeJIb6a no u;eJIH .n;o nepBoro nona.n;aHH.H. BepO.HT-

HOCTb nona.n;aHH.H npH Ka)K.n;OM BbICTpeJIe paBHa 0,2. HafiTH MaTeMaTH'IeCKOeO)KH.n;aHHe H .n;HcnepcHIO CJIY'IafiHOfiBeJIH'IHHbIX -

'IHCJIanpoH3Be.n;eHHblx BbICTpeJIOB, C'IHTM,'ITO:

a) CTpeJI.HTb MO)KHO HeOrpaHH'IeHHOe'IHCJIOpa3;

B) B HaJIH'IHHeCTb Bcero 5 naTpOHOB.

Q a) CJIY'IafiHMBeJIH'IHHaX HMeeT reOMeTpH'IeCKOepacnpe.n;eJIeHHe, ee p.H.n; pacnpe.n;eJIeHH.H HMeeT BH.n;

Xi

1

2

3

...

Pi

P

qp

q2p ...

l.fI1CJIOBble xapaKTepHCTI1KH 9Toro pacnpe.n;eJIeHH.H: M(X) = ~, D(X) = q2'

P

CJIe.n;OBaTeJIbHO, 3Ha.H, 'ITOP = 0,2 H q = 0,8, HMeeM:

M(X) = 012 = 5;

D(X) =

~084 = 20.

 

,

 

 

 

,

 

6) P.H.n; pacnpe.n;eJIeHH.H c. B. X HMeeT BH.n;

 

 

Xi

1

2

3

4

5

 

Pi

P

qp

q2p

q3 p q4

 

n09TOMY, M(X) = 1 . P +

2 . qp +

3 . q2p +

4 . q3p +

5q4; npH p = 0,2 H

q = 0,8 HMeeM M(X) = 0,2 +

0,32 + 0,384 +

0,4096 +

2,048 = 3,3616, T. e.

M(X) = 3,3616; ,I:LaJIee

 

 

 

 

 

 

D(X) = M(X)2 - (M(X))2 = l·p+4·qp+9.q2p + 16.q3p +25q4- (M(X))2;

npl1 p = 0,2 H q = 0,8 nOJIy'IHM

D(X) = 0,2+0,64+1,152+1,6384+10,24-(3,3616)2 ~ 13,8704-11,3 = 2,57,

T. e. D(X) = 2,57. •

375

Hait,n:eM, HCnOJIb3YH CJIe.n:yIOmee CBOitCTBO nJIOTHOCTH

6.11.10. IIrpoK nOKynaer JIOTepeitHbIe 6HJIeTbI ,n:o nepBoro BbIHrpbIma. Be-

pmlTHOCTb BbIHrpbIma no O,n:HOMY 6HJIeTY paBHa 0,1. HaitTH M(X),

r,n:e c. B. X - qHCJIO KynJIeHHbIX 6HJIeTOB, eCJIH HrpOK MO:>KeT Ky-

nHTb:

a)TOJIbKO qeTbIpe 6HJIeTa;

6)HeOrpaHHqeHHOe (nycTb TeOpeTHqeCKH) qHCJIO 6HJIeToB.

6.11.11.BepoHTHocTb npoH3Bo,n:cTBa HecTaH,n:apTHoit ,n:eTaJIH paBHa 0,05.

KOHTpOJIep npOBepHeT napTHIO ,n:eTaJIeit, 6epH no O,n:HOit ,n:o nepB0ro nOHBJIeHHH HecTaH,n:apTHoit ,n:eTaJIH, HO He 60JIee 3 mTYK. HaitTH MaTeMaTHqeCKOe O:>KH,n:aHHe H ,n:HcnepCHIO qHCJIa npOBepeHHbIX CTaH,n:apTHbIX ,n:eTaJIeit.

6.11.12.IIrpaJIbHM KOCTb no,n:6pacbIBaeTcH ,n:o nepBoro nOHBJIeHHH nHTH OqKOB. KaKOBa BepOHTHOCTb Toro, qTO nepBoe BblDa,n:eHHe nHTepKH npoH30it,n:eT npH nHTOM no,n:6pacbIBaHHH HrpaJIbHoit KOCTH?

6.11.13.CJIyqaitHM BeJIHqHHa X pacnpe,n:eJIeHa paBHoMepHo Ha oTpe3Ke

[a, b), T. e. X "" R[a, b]. HaitTH BepoHTHoCTb nona,n:aHHH c. B. X Ha OTpe30K [a,.8), II;eJIHKOM co,n:ep:>KamHitCH BHyTpH oTpe3Ka [a, b].

Q BocnoJIb3yeMcH H3BecTHoit q,0PMYJIOit

{3

Pia ~ X ~.8} = Jf(x)dx,

a

r,n:e nJIOTHOCTb BepOHTHOCTH c. B. x"" R[a, b] HMeeT BH,n:

-Ib , X E [a,b), f(x) = { - a

0, xi [a,b].

 

{3

 

1{3.8 - a

 

I

I

Pia ~ X ~.8} = PiX E [a,.8]} = J-b- dx = -b- ·x

= -b-'

 

-a

-a

a

-a

 

a

 

 

 

T.e. OKOHqaTeJIbHO PiX E [a,.8]}

.8-a

 

 

= -b--'

 

 

 

-a

 

 

 

6.11.14. TIJIOTHOCTb BepoHTHoCTH HenpepbIBHoit CJIyqaitHoit BeJIHqHHbI X

HMeeT BH,n:

f(x) = {0,25 . A,

x E [0,4],

0,

xi [0,4].

HaitTH A, F(x), M(X), D(X), u(X), PiX E [0; I,l]}.

Q K09q,q,HII;HeHT A

BepOHTHOCTH

J00 f(x)dx = 1.

- 00

376

Ih1eeM

00

0

4

00

j I(x)dx=

jOdx+ jO,25Adx+ jOdx=l,

-00

-00

0

4

T. e. 0,25Axl~ = 1. OTCIO,ll;a CJIe.rr.yeT, 'ITOA = 1. IlTaK,

I(X)={~' XE[0,4),

0, xi [0,4),

II, 3Ha'IHT,CJIY'IaitHruIBeJIH'IHHaX paBHOMepHO pacnpe,ll;eJIeHa Ha OTpe3Ke

[0,4),

<I>YHKIJ;H8 pacnpe,ll;eJIeHH8 ,ll;JI8 c. B.

X""" R[0,4) HMeeT BH,ll;

O,

x ~ 0,

F(x) = { i,

< x ~ 4,

 

°

1,

4 < x.

qHCJIOBbIe xapaKTepHCTHKH 9Toro pacnpe,ll;eJIeHH8 TaKOBbI:

M(X) = [a~b] = 0~4 =2,

 

D(X) = [(b-a)2]

_42 -1

 

 

12

 

 

-

12 -

3'

 

 

f'TV"V\]

=

2

2va

 

a(X) = [V D(X)

va

= -3-'

Bepo8THoCTb nOna,IJ;aHH8 c. B. X

B

npOMe:>KYTOK [OJ 1,1) HaxO,ll;HM, HC-

IIOJIb3Y8 <P0PMYJIY P{X E

[0'., (3l) =

(3-0'.

(CM. 3a,IJ;a'IY 6.11.13). OTCIO,ll;a

b _

a

P{X E [OJ I,ll} = 141_-0° =

141 = 0,275.

 

 

 

6.11.15.

HeKTo O:>KH,ll;aeT TeJIe<poHHbIit 3BOHOK Me:>K.rr.y 19.00 H 20.00. BpeM8

 

O:>KH,ll;aHH8 3BOHKa eCTb HenpepbIBHruI c. B. X, HMelOIIJ;ruI paBHOMep-

 

Hoe pacnpe,ll;eJIeHHe Ha OTpe3Ke [19,20). HaitTH Bep08THOCTb Toro,

 

'ITO3BOHOK nocTynHT B npOMe:>KYTKe OT 19 'lac22 MHHYT,ll;O 19 'lac

 

46 MHHYT.

 

 

 

 

 

 

 

6.11.16.

CJIY'IaitHruI BeJIH'IHHa X,

pacnpe,ll;eJIeHHruI paBHoMepHo, HMeeT

 

CJIe.rr.yIOIIJ;He 'IHCJIOBblexapaKTepHcTHKH

M(X) = 2, D(X) = 3.

 

HaitTH F(x).

 

 

 

 

 

 

 

6.11.17.

IIpo C.B. X H3BeCTHO, 'ITOX """

R[4, 7). HaitTH:

 

a) I(x)j

 

 

 

6) M(X) H a(X)j

B) P{X E (6j6,81)}.

6.11.18.«PYHKIJ;H8 pacnpe,ll;eJIeHH8 HenpepbIBHoit CJIY'IaitHoitBeJIH'IHHbIX

HMeeT BH,ll;, YKa3aHHbIit Ha pHC. 90. HaitTH aHaJIHTH'IeCKHeBbIpa-

:>KeHH8,ll;JI8 F(x), I(x), M(X) H D(X).

6.11.19.HenpepblBHruI CJIY'IaitHruIBeJIH'IHHaX HMeeT nOKa3aTeJIbHOe pacnpe,ll;eJIeHHe. HaitTH Bepo8THoCTb nona,IJ;aHH8 c. B. X B HHTepBaJI

(a, b), r,ll;e a ~ 0.

377

 

 

F(x)

 

 

 

 

 

 

 

1 --------------------------

 

 

.=,-_.----

 

 

 

-2

-1 0

 

 

6

x

 

 

 

Puc.

90

 

 

 

 

a BOCrrOJIb30BaBIIIHcb <POPMYJIOit

 

 

 

 

 

 

 

 

 

(3

 

 

 

 

 

P{a ~ X ~,B} =

j I(x)dx,

 

 

 

 

 

0<

 

 

 

 

 

b

 

 

b

 

 

 

P{a < X < b} = j-Xe- Ax dx = -e-AX!a = _e- Ab + e- Aa ,

 

 

 

a

 

 

 

 

 

T.e. P{X E (a,b)} = e- Aa - e- Ab .

 

 

 

 

 

3TOT JKe pe3YJIbTaT MOJKHO rrOJIY'IHTb,HCrrOJIb3YH <POPMYJIY

 

 

 

P{a < X < b} = F(b) -

F(a).

 

 

TaK KaK F(x) = 1 -

e- AX , X ;:: 0, TO

 

 

 

 

 

 

P{a < X < b} = (1- e- Ab ) -

(1- e- Aa ) = e- Aa _ e- Ab .

6.11.20.

BpeMH T BbIxo,n:a H3 CTPOH pa,n:HOCTaHII;HH rro,n:'IHHeHOrrOKa3aTeJIb-

 

HOMY 3aKOHY pacrrpe,n:eJIeHHH C rrJIOTHOCTbIO

 

 

 

 

FT(t) = {0,2 . e-O,2t,

rrpH

t;:: 0,

 

 

 

 

0,

 

rrpH

t < O.

 

 

 

HaitTH: <PYHKII;HIO pacrrpe,n:eJIeHHH FT(t); MaTeMaTH'IeCKOeOJKH,n:a-

 

HHe H ,n:HCrrepCHIO CJIY'IaitHoitBeJIH'IHHbIT; BepOHTHOCTb TOrO, 'ITO

 

pa,IJ,HOCTaHII;HH COXpaHHT pa60TOCrroco6HOCTb OT 1 ,n:o 5 'lac.pa6o-

 

TbI.

 

 

 

 

 

 

6.11.21.

C. B. X pacrrpe,n:eJIeHa rro rroKa3aTeJIbHoMY 3aKoHY C rrapaMeTpoM

 

-X = 0,4.

HaitTH ,n:H<p<pepeHII;HaJIbHYIO H HHTerpaJIbHYIO <PYHKII;HH

 

pacrrpe,n:eJIeHHH (T. e. I(x) H

F(x)),

a(X), a TaKJKe BepOHTHOCTb

 

rrOrra,IJ,aHHH 3Ha'IeHHitc. B. X B HHTepBaJI (0,25; 5).

 

 

6.11.22.

C.B. X, KOTOPM paBHa ,n:JIHTeJIbHOCTH pa60TbI 9JIeMeHTa, HMeeT

 

rrJIOTHOCTb pacrrpe,n:eJIeHHH I(t)

= O,003e-O,003t, t

;:: 0.

HaitTH:

 

cpe,n:Hee BpeMH pa60TbI 9JIeMeHTa; BepoHTHoCTb Toro, 'ITO9JIeMeHT

 

rrpopa6oTaeT He MeHee 400 'IacOB.

 

 

 

378

6.11.23. Cpe,lJ;mul npO,lJ;OJDKHTeJIbHOCTb TeJIe<poHHoro pa3rOBOpa paBHa

3 MHH. HalI:TH BepOHTHOCTb Toro, qTO npOH3BOJIbHbIit TeJIe<poH-

Hblit pa3rOBOp 6Y,lJ;eT npO,lJ;OJDKaTbCH He 60JIee 9 MHHyT, CqHTM, qTO BpeMH pa3rOBOpa HBJIHeTCH c. B. X, pacnpe,lJ;eJIeHHoit no nOKa3aTeJIbHOMY 3aKoHY.

6.11.24. Onpe,lJ;eJIHTb 3aKOH pacnpe,lJ;eJIeHHH CJIyqaitHoit BeJIHqHHbI X, eCJIH

ee nJIOTHOCTb BepoHTHoCTH HMeeT BH,lJ;

I(x) = A . e- x2 + 2x+1.

 

HaitTH:

 

6) u(X);

 

 

 

a) M(X);

 

 

 

 

B) 3HaqeHHe K09<P<PHII;HeHTa A;

r) M(X2);

 

 

o

.u.) P{1 < X < 3}.

 

 

(x _ 1)2

 

CPaBHHB ,lJ;aHHYlO <PYHKII;HlO

 

-

(~)

2

I(x) = e- x2 + 2x+1 = e-(x-1)2+2 = e 2 . e-(x-1)2 = A . e2 . e

 

C nJIOTHOCTblO

1

_ (x - a)2

 

 

 

I(x) =

 

 

 

. e

20'2

 

 

u·.j2;

HOpMaJIbHOrO pacnpe,lJ;eJIeHHH, 3aKJIlOqaeM,

qTO c. B. X HMeeT HOpMaJIbHOe

pacnpe,lJ;eJIeHHe.

 

 

 

 

 

a) OqeBH,lJ;HO, M(X) = 1.

 

 

 

 

1

 

 

 

 

 

6) u(X) = y'2'

 

 

 

 

 

B) 3HaqeHHe K09<P<PHII;HeHTa A Hait,lJ;eM H3 paBeHCTBa A . e2 =

~,

r,lJ;e u = ~ ~ 0,71. OTClO,lJ;a

 

 

211'

 

 

 

 

A =

 

1

 

1

 

 

e2 ._1 . y'2. y'7i e2 ."y'7i·

 

 

V2

 

 

 

CJIe,lJ;OBaTeJIbHO, nJIOTHOCTb BepoHTHoCTH c. B. X HMeeT BH,lJ;

 

 

 

 

 

(x - 1)2

 

I(x) =

1

.e2.e-2·(~r

 

 

e2

. y'7i

 

 

T.e.

 

 

 

(x - 1)2

 

 

 

 

 

 

I(x) =

1

.e

2·(~r

 

 

_1 . .j2;

 

 

V2

aCHO, qTO X'" N (1; ~).

r) M(X2) Hait,lJ;eM, HCnOJIb3YH <POPMYJIY D(X) ,= M(X2) - (M(X»2. B

Ra1IIeM cJIyqae M(X) = 1, D(X) = (U(X»2 = ~. II09ToMY

M(X2) = D(X) + (M(X»2 = ~ + 1 = ~.

379

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]