Сборник задач по высшей математике 2 том
.pdf6.10.57. 3MaHa IIJIOTHOCTb paCIIpe.IJ:eJIemUI c. B. X:
O, |
x < 0, |
f(x) = { 0,1, |
°~ x < A, |
0,2, |
A ~ x < 2A, |
0, |
2A~ x. |
HaATH A, M(X) H D(X).
6.10.58. "(ITo MO:>KHO CKa3aTb 0 MaTeMaTHQeCKOM O:>KH.IJ:aHHH c. B. X, 3MaHHoii IIJIOTHOCTblO paCIIpe.IJ:eJIeHHH
x E~?
§11. BA>KHEl1WlI1E PACnPEAEl1EHlI1S1 Cl1Y'-IAl1HbIX BEl1l11 '-I1I1H
Ba)l(Heliiwllle AIIICKpeTHble pacnp~eneHIIIH
~ 1. )J,lfCKpeTHaH CJIY'Iai!:HaH BeJIlf'llfHa lfMeeT 6U'HOMUa.l!'b'lWe pacnpeiJe.l!e'Hue
(lfJIlf pacnpe,n;eJIeHa no 6lfHOMlfaJIbHOMY 3aKOHY), eCJIlf OHa nplfHlfMaeT 3Ha'leHlfH:
0,1,2,.... , n C COOTBeTCTBYIOIIJ;lfMlf BepOHTHOCTHMlf:
Pm=P{X=m}=C;::·pm.qn-m, I',n;e O<p<l, q=l-p, m=0,1,2, ... ,n.
$
MaTeMaTlf'leCKOeOJKlf,n;aHlfe If ,n;lfcnepClfH c. B. X, lfMeIOIIJ;ei!: 6lfHOMlfaJIbHOe pac-
npe,n;eJIeHlfe, HaxO,n;HTCH no q,0pMYJIaM:
M(X) = np, D(X) = npq.
1'13q,OPMYJIbI BepHYJIJIlf CJIe.n;yeT, 'ITOC. B. X - '1lfCJIOnOHBJIeHlfi!: C06bITlfH A
B ceplflf lf3 n He3aBlfClfMbIX lfcnbITaHlfi!: (P(A) = p) - pacnpe,n;eJIeHa no 6lfHOMlfaJIbHOMY 3aKOHY.
~ 2. )J,lfcKpeTHaH CJIY'Iai!:HaHBeJIlf'llfHalfMeeT pacnpeiJe.l!e'Hue IIyacco'Ha (lfJIlf pacnpe,n;eJIeHa no 3aKOHY IIyaccoHa), eCJIlf OHa nplfHlfMaeT C'IeTHOe '1lfCJIO 3Ha- '1eHlfi!::0,1,2, ... , m ... , C cooTBeTcTBYIOIIJ;lfMlf BepOHTHOCTHMlf
. |
am. e- a |
|
|
Pm=P{X=m}= |
m." |
I',n;e m=0,1,2, ... ; a=np. |
$ |
MaTeMaTlf'leCKOe OJKlf,n;aHlfe If ,n;lfcnepClfH c. B. X, lfMeIOIIJ;ei!: pacnpe,n;eJIeHlfe |
|||
IIyaccoHa, HaxO,n;HTCH no q,0pMYJIaM: |
|
|
|
|
M(X) = a, |
D(X) = a. |
|
Pacnpe,n;eJIeHlfe IIyaccoHa HBJIHeTCH npe,n;eJIbHbIM MH 6lfHOMlfaJIbHOI'O, eCJIlf '1lfCJIOonbITOB n YCTpeMJIHeTCH K 6eCKOHe'lHOCTlf,a BepOHTHOCTb C06bITlfH p CTpeMlfTCH K HYJIIO, nplf'leMlfX npolf3Be,n;eHlfe np = a OCTaeTCH nOCTOHHHbIM. IIplf 3TlfX
YCJIOBlfHX (T.e. n-+oo, p-+O, np=a=const) BepOHTHOCTb P{X=m}=C;::pmqn-m,
= 1 - p, Haxo,n;lfMaH no q,0pMYJIe BepHYJIJIlf, CTpeMlfTCH K BepoHTHoCTlf
370
HaXO,ll;HMoil: no 3aKOHY IIyaccoHa. II09ToMY pacnpe,ll;eJleHHe IIyaccoHa rrpH6JIHEeHHO 3aMeHHeT 6HHOMHaJIbHOe pacnpe,ll;eJleHHe B eJIY'lae, KOr,ll;a '1HeJIO orrbITOB BeJlHKO, a BepOHTHOCTb C06b1THH A B KaJK,II;OM H3 HHX MaJIa. C 9THM CBH3aHO eIIle O,ll;HO Ha3BaHHe pacnpe,ll;eJleHHe IIyaccoHa -
~ 3. )l;HcKpeTHaH eJIY'lail:HaHBeJlH'IHHaHMeeT
eCJIH OHa npHHHMaeT C'IeTHOe'1HCJIO3Ha'leHHiI::1,2, ... , m, ... C cooTBeTcTBYJOIII;HMH BepoHTHOCTHMH:
pm = PiX = m} = qm-l . p, r,ll;e m = 1,2, ... , °< p < 1, q = 1- p. ~
)l;.nH c. B. X, HMeJOIII;eil: reOMeTpH'IeCKOepacnpe,ll;eJleHHe
1
M(X) = P'
CJIY'lail:HYJOBeJlH'IHHY,pacnpe,ll;eJleHHyJO no reoMeTpH'IecKoMY 3aKoHY, MOE-
HO HHTepnpeTHpoBaTb KaK '1HCJIOm onbiTOB (HcnblTaHHiI:), npOBe,ll;eHHblX no cxeMe
BepHYJ1J1H ,11;0 nepBoro nOJIOEHTeJJbHOrO HCXO,ll;a.
Ba)l(Heiiiwllle HenpepblBHble pacnpE!AeneHIIIR
~ 4. HenpepbIBHaH eJIY'lail:HaHBeJIH'IHHaX
'Ha ompe31Ce [a;b], eeJIH ee nJIOTHOCTb BepoHTHoCTH I(x) nOCTOHHHa Ha 9TOM oTpe3Ke, a BHe ero paBHa HYJIJO:
I(x)={b~a' |
npH |
x E [a,b], |
0, |
npH |
x f. [a, b]. |
TOT <paKT, 'ITOC. B. X pacnpe,ll;eJleHa paBHOMepHO, 3anHCbIBaJOT KOPOTKO TaK:
X ~ R[a,b].
K CJIY'Iail:HblMBeJlH'IHHaM,HMeJOIII;HM paBHOMepHoe pacnpe,ll;eJleHHe, OTHOCHTCH Te c. B., 0 KOTOPblX H3BeCTHO, 'ITOBce HX 3Ha'leHHHJIeEaT BHYTPH HeKOToporo npoMeEYTKa [a, b] H npH 9TOM O,ll;HHaKOBO B03MOEHbI. HanpHMep, BpeMH OEH,II;aHHH TpaHcnopTa, OIIIH6Ka, nOJIY'IaJOIII;aHCHOT oKpyrJIeHHH pe3YJIbTaTa H3MepeHHH ,11;0
6JIHEail:IIIero U;eJloro '1HeJIa,H T.,II;.
<lIYHKU;HH pacnpe,ll;eJleHHH F(X),II;J1H paBHOMepHO pacnpe,ll;eJIeHHoil: C. B. X HMeeT
BH,II; |
|
O' |
npH x ~ a, |
F(x) = { x -a,
b _ a
1,
npH |
a < x ~ b, |
npH |
b < x. |
qHeJIOBble xapaKTepHcTHKH paBHOMepHoro pacnpe,ll;eJleHHH:
M(X) = a~b, |
D(X) = (b - a)2 |
|
12 |
|
371 |
~ 5. HenpephIBHaJI CJIyqaitHaJI BeJlHqHHa X HMeeT n01Ca3ameJlb?toe (rum 31Ccno· ?teHquaJlbHoe) pacnpe,ll;eJleHHe, eCJIH ee IIJIOTHOCTb BepOHTHOCTH HMeeT BH,II;
f(x) = {.>... e->"", |
npH |
x ~ 0, |
|
|
|
0, |
npH |
x < 0, |
r,ll;e .>.. > °- napaMeTp ,ll;aHHOrO pacnpe,ll;eJleHHH.
cIIYHXD:HH pacnpe,ll;eJleHHH c. B. X, pacnpe,ll;eJleHHoit no nOXa3aTeJlbHoMY 3aKOHY, HaXO,ll;HTCH no q,0pMYJIe
F(x) = {1 -e->"",
0,
npH |
x |
~o, |
npH |
x |
< 0. |
BaliCHeitmHe qHCJIOBble XapaKTepHCTHxH 9Toro pacnpe,ll;eJleHHH Onpe,ll;eJlHIOTCH paseHcTBaMH:
1 |
u(X) = 1. |
M(X) = X, |
|
|
.>.. |
~ 6. HenpepblBHaJI CJIyqaitHaH BeJlHqHHa X HMeeT ?topMaJlb?toe pacnpeiJeJle?tue
(roBopHT TaKlKe, 'ITOOHa pacnpe,ll;eJleHa no HOPMaJIbHOMY 3aKOHY HJIH no 3aXOHY raycca), eCJIH ee nJIOTHOCTb HMeeT BH,II;
(x - a)2 f(x) = __1_ .e-~
u·V2-K
rpa<PHX q,YHXD:HH f(x) Ha3b1BaeTCH 1Cpu6oit raycca (pHC. 89).
f(x)
x
Puc. 89
TOT q,aKT, 'ITOC. B. X pacnpe,ll;eJleHa no HOPMaJIbHOMY 3aXOHY, 3anHChIBaIOT XOpOTXO, Tax: X ,..... N(a, u).
IIapaMeTpbl a H u npe,ll;CTaBJIHIOT co6oit COOTBeTCTBeHHO MaTeMaTHqeCXOe OlKH- ,ll;aHHe H cpe,ll;HexBa,II;paTHqeCXOe OTXJIOHeHHe c. B. X, T. e.
a = M(X), u = u(X).
372
ECJIH a = °H 0' = 1, T. e. c. B. X ,.." N(O, 1), TO COOTBeTCTBYIOw;ee HOpMaJIbHOe pacnpe,ll;eJleHHe Ha3blBaeTCH cma'itiJapm'lt'b£.M. ~YHKU;HH pacnpe,ll;eJleHHH .II.JlH TaxOil: CJIyqail:Hoil: BeJlHqHHbl HMeeT BH,ll;
II 06JIa,ll;aeT (nOMHMO 06blqHblX CBOil:CTB <PYHKU;HH pacnpe,ll;eJleHHH) CBOil:CTBOM
~(x) + ~(-x) = 1, x E R.
B 60JIee 06w;eM CJIyqae (X ,.." N(a, 0'» <PYHKU;HH pacnpe,ll;eJleHHH HOpMaJIbHOrO 3aKOHa BbipalKaeTCH <P0PMYJIOil:
'" (t - a)2
F(x) = u~ j e- 2T dt = ~ (X -;, a) = 0,5 + ~o (X -;, a) ,
- 00
~o(x) = _1_. je'" -zt2 dt
-J2;o
-Ha3blBaeTCH tjjy'lt1{;v,uefj, JIanliaca (HHOr,ll;a <PYHKU;Heil: JIanJIaca Ha3blBaIOT <PYHK- U;HIO
|
J:rr |
j'"e- t2 dt). |
|
|
o |
<PYHKU;HH JIanJIaca 06JIa,ll;aeT CJIe,ll;yIOW;HMH cBoil:cTBaMH: |
||
1) |
~o(-x) = -~o(x), T.e. <PYHKU;HH |
~o(x) - HeqeTHaH. OTCIO,ll;a, B qaCTHOCTH, |
CJIe,ll;yeT, qTO ~o(O) = OJ |
|
|
2) |
~o(+oo) = 0,5. |
|
Ta6JIHIJ;y 3HaqeHHiI: <PYHKU;HH JIanJIaca MO)KHO lfail:TH B npHJIO)KeHHH 2.
CBH3b <PYHKU;HH ~(x) C <PYHKU;Heil: JIanJIaca ~o(x) BblpalKaeTCH <P0PMYJIOil:
~(x) = 0,5 + ~o(x).
BepOHTHOCTb nOna,ll;aHHH HOPMaJIbHO pacnpe,ll;eJleHHoil: CJIyqail:Hoil: BeJlHqHHbl B 3a,J:J:aHHblil: HHTepBaJI (a, (3) Onpe,ll;eJlHeTCH <POPMYJIOil:
|
f3- a ) |
(a-a) |
(f3- a ) |
|
(a-a) |
P{a<X<f3}=~ ( -0'- |
-~ -0'- =~o |
-0'- |
-~o -0'- . |
||
BepOHTHOCTb nOna,ll;aHHH c. B. X ~ N(a,u) B HHTepBaJI (a - |
c, a + c), CHMMe- |
||||
TPHqHblil: OTHOCHTeJlbHO u;eHTpa pacceHHHH a, HaxO,ll;HTCH no <p0pMYJIe |
|||||
P{ a - |
c < X < a + c} = P{IX - al < c} = 2~o (~) = 2~ (~) - 1. |
||||
B qacTHOCTH, |
P{IX - al < 3u} |
~ 0,9973, T. e. npaxTHqeCKH |
,ll;OCTOBepHO, qTO |
||
c. B. X ~ N(a,u) npHHHMaeT CBOH 3HaqeHHH B npOMe)KYTKe (a - |
30', a + 30'). 3To |
||||
YTBep)K,ll;eHHe Ha3blBaeTCH «npaBHJIOM Tpex CHrM».
373
6.11.1.20% H3,Il;eJIHiI:, BbIIIycKaeMblx ,Il;aHHbIM npe,Il;npHHTHeM, H)')K,Il;aIOTCg
B ,Il;OnOJIHHTeJIbHoil: perYJIHpOBKe. HaY,Il;aqy oT06paHo 150 H3,Il;eJIHiI:. Hail:TH Cpe,Il;Hee 3HaqeHHe H ,Il;HCnepCHIO CJIyqail:Hoil: BeJIHqHHbI X - qHCJIa H3,Il;eJIHiI: B BbI60pKe, HY)K,Il;alOllJHXCH B perYJIHpOBKe.
<) B ,Il;aHHOM cJIyqae MbI HMeeM ,Il;eJIO co cxeMoil: HcnbITaHHiI: BepHYJIJIH, no9TOMY c. B. X HMeeT 6HHOMHaJIbHOe pacnpe,Il;eJIeHHe. IIcnoJIb3YH <P0PMYJIbI
M(X) = np H D(X) = npq, HaXO,Il;HM (npH n = 150, p = 0,2, q = 0,8) |
|
M(X) = 150·0,2 = 30, D(X) = 150·0,2·0,8 = 24. |
• |
6.11.2. Hail:TH Cpe,Il;Hee qHCJIO JIOTepeil:Hblx 6HJIeTOB, Ha KOTopble Bbma- )1;JT BbIHrpbIlliH, eCJIH npH06peTeHo 20 6HJIeTOB, a BepOHTHOCTb BblHrpbIllia O,Il;HOrO 6HJIeTa paBHa 0,1. Hail:TH ,Il;HCnepCHIO qHCJIa
ycnexoB B ,Il;aHHOM onbITe.
6.11.3. llpoBo)1;HTCH 3 He3aBHCHMbIX HCnbITaHHH, B K~,Il;OM H3 KOTOPbIX BepOHTHOCTb HacTynJIeHHH HeKOToporo C06bITHH nOCTOHHHa H paB-
Ha p. qHCJIO nOHBJIeHHiI: C06bITHH A B 9TOM onbITe. Hail:TH D(X), eCJIH H3BeCTHO, qTO M(X) = 2,1.
6.11.4. BepoHTHoCTb nop~eHHH u;eJIH npH O,Il;HOM BbICTpeJIe paBHa 0,4.
CKOJIbKO Ha)1;O npOH3BeCTH BbICTpeJIOB, qT06bI MO)KHO 6bIJIO O)KH-
,Il;aTb B Cpe,Il;HeM 80 nOna)1;aHHiI: B u;eJIb?
6.11.5. llpoBepHeTcH napTHH H3 10000 H3,Il;eJIHiI:. BepoHTHoCTb TOro, qTO H3,Il;eJIHe OK~eTCH 6paKOBaHHbIM, paBHa 0,002. Hail:TH MaTeMaTHqeCKOe O)KH,Il;aHHe H ,Il;HCnepCHIO qHCJIa 6paKoBaHHblx H3,Il;eJIHiI: B 9TOil: napTHH. Hail:TH BepoHTHoCTb Toro, qTO B napTHH eCTb XOTH
6bI O,Il;HO 6PaKOBaHHOe H3,Il;eJIHe.
<) l..JHCJIO onbITOB |
(n = |
10000) ,Il;OCTaTOqHO BeJIHKO, a BepoHTHoCTb (p = |
= 0,002) «ycnexa» |
B K~,Il;OM H3 HHX MaJIa, n09ToMY MO)KHO CqHTaTb, qTO |
|
CJIyqail:HM BeJIHqHHa X - |
qHCJIO 6paKOBaHHblx H3,Il;eJIHiI: - pacnpe,Il;eJIeHa |
|
no 3aKOHY llyaccoHa: ee B03MO)KHble 3HaqeHHH 0,1,2, ... , 10000, a COOTBeTCTBYlOllJHe BepoHTHoCTH BblqHCJIHIOTCH no <popMYJIe
ame- a
Pm = P{X = m} = --,-.
m.
llo <popMYJIe a = np onpe,Il;eJIHeM napaMeTp a H MaTeMaTHqeCKOe O)KH-
,Il;aHHe c. B. X:
M(X) = a = 10000·0,002 = 20.
,1l;HcnepcHH qHCJIa 6paKoBaHHblx H3,Il;eJIHiI: paBHa
D(X) = npq = 10000·0,002·0,998 = 19,96,
T.e. M(X) ~ D(X). lloJIaI'MM(X) = D(X) = 20, HaxO,Il;HM npH6JIH)KeHHO HCKOMYIO BepoHTHoCTb C06bITHH A = {B napTHH CO,Il;ep)KHTCH XOTH 6bI O,Il;HO 6paKoBaHHoe H3,Il;eJIHe}:
P(A) = 1 - |
- |
PlOOOO(O) = 1- |
200 . |
e-20 |
= |
|
|
P(A) = 1 - |
O! |
|
|
||||
|
|
= 1 - |
e- 20 |
|
= 1 - 2,06 . 10-9 ~ 1. |
• |
|
374
6.11.6.,I:LHcKpeTHM CJIY'IafiHMBeJIH'IHHaX pacnpe.n;eJIeHa no 3aKoHY IIyaccoHa C napaMeTpoM a = 0,324. HafiTH MaTeMaTH'IeCKOeO)KH-
.n;aHHe H cpe.n;HeKBa.n;paTH'IeCKOeOTKJIOHeHHe 9TOfi CJIY'IafiHOfiBeJIH'IHHbI.
6.11.7.B Mara3HH OTnpaBJIeHbI 1000 6YTbIJIOK MHHepaJIbHOfi BO.n;bI. Bepo-
.HTHOCTb Toro, 'ITOnpH nepeB03Ke 6YTbIJIKa OKa)KeTC.H pa36HTOfi, paBHa 0,002. HafiTH:
a) cpe.n;Hee 'IHCJIOPa36HTbIX 6YTbIJIOK;
6) BepO.HTHOCTb Toro, 'ITOMara3HH nOJIy'IHT60JIee .n;ByX pa36HTbIX
6YTbIJIOK.
6.11.8.Co06meHHe co.n;ep)KHT 1000 CHMBOJIOB. BepO.HTHOCTb HCKa)KeHH.H o.n;Horo CHMBOJIa paBHa 0,004. HafiTH cpe.n;Hee 'IHCJIOHCKa)KeHHbIX CHMBOJIOB; HafiTH BepO.HTHOCTb Toro, 'ITO6y.n;eT HCKa)KeHO He 60JIee 3-x CHMBOJIOB.
6.11.9.IIpoH3Bo.n;HTC.H CTpeJIb6a no u;eJIH .n;o nepBoro nona.n;aHH.H. BepO.HT-
HOCTb nona.n;aHH.H npH Ka)K.n;OM BbICTpeJIe paBHa 0,2. HafiTH MaTeMaTH'IeCKOeO)KH.n;aHHe H .n;HcnepcHIO CJIY'IafiHOfiBeJIH'IHHbIX -
'IHCJIanpoH3Be.n;eHHblx BbICTpeJIOB, C'IHTM,'ITO:
a) CTpeJI.HTb MO)KHO HeOrpaHH'IeHHOe'IHCJIOpa3;
B) B HaJIH'IHHeCTb Bcero 5 naTpOHOB.
Q a) CJIY'IafiHMBeJIH'IHHaX HMeeT reOMeTpH'IeCKOepacnpe.n;eJIeHHe, ee p.H.n; pacnpe.n;eJIeHH.H HMeeT BH.n;
Xi |
1 |
2 |
3 |
... |
Pi |
P |
qp |
q2p ... |
|
l.fI1CJIOBble xapaKTepHCTI1KH 9Toro pacnpe.n;eJIeHH.H: M(X) = ~, D(X) = q2'
P
CJIe.n;OBaTeJIbHO, 3Ha.H, 'ITOP = 0,2 H q = 0,8, HMeeM:
M(X) = 012 = 5; |
D(X) = |
~084 = 20. |
||||
|
, |
|
|
|
, |
|
6) P.H.n; pacnpe.n;eJIeHH.H c. B. X HMeeT BH.n; |
|
|
||||
Xi |
1 |
2 |
3 |
4 |
5 |
|
Pi |
P |
qp |
q2p |
q3 p q4 |
|
|
n09TOMY, M(X) = 1 . P + |
2 . qp + |
3 . q2p + |
4 . q3p + |
5q4; npH p = 0,2 H |
||
q = 0,8 HMeeM M(X) = 0,2 + |
0,32 + 0,384 + |
0,4096 + |
2,048 = 3,3616, T. e. |
|||
M(X) = 3,3616; ,I:LaJIee |
|
|
|
|
|
|
D(X) = M(X)2 - (M(X))2 = l·p+4·qp+9.q2p + 16.q3p +25q4- (M(X))2;
npl1 p = 0,2 H q = 0,8 nOJIy'IHM
D(X) = 0,2+0,64+1,152+1,6384+10,24-(3,3616)2 ~ 13,8704-11,3 = 2,57,
T. e. D(X) = 2,57. •
375
6.11.10. IIrpoK nOKynaer JIOTepeitHbIe 6HJIeTbI ,n:o nepBoro BbIHrpbIma. Be-
pmlTHOCTb BbIHrpbIma no O,n:HOMY 6HJIeTY paBHa 0,1. HaitTH M(X),
r,n:e c. B. X - qHCJIO KynJIeHHbIX 6HJIeTOB, eCJIH HrpOK MO:>KeT Ky-
nHTb:
a)TOJIbKO qeTbIpe 6HJIeTa;
6)HeOrpaHHqeHHOe (nycTb TeOpeTHqeCKH) qHCJIO 6HJIeToB.
6.11.11.BepoHTHocTb npoH3Bo,n:cTBa HecTaH,n:apTHoit ,n:eTaJIH paBHa 0,05.
KOHTpOJIep npOBepHeT napTHIO ,n:eTaJIeit, 6epH no O,n:HOit ,n:o nepB0ro nOHBJIeHHH HecTaH,n:apTHoit ,n:eTaJIH, HO He 60JIee 3 mTYK. HaitTH MaTeMaTHqeCKOe O:>KH,n:aHHe H ,n:HcnepCHIO qHCJIa npOBepeHHbIX CTaH,n:apTHbIX ,n:eTaJIeit.
6.11.12.IIrpaJIbHM KOCTb no,n:6pacbIBaeTcH ,n:o nepBoro nOHBJIeHHH nHTH OqKOB. KaKOBa BepOHTHOCTb Toro, qTO nepBoe BblDa,n:eHHe nHTepKH npoH30it,n:eT npH nHTOM no,n:6pacbIBaHHH HrpaJIbHoit KOCTH?
6.11.13.CJIyqaitHM BeJIHqHHa X pacnpe,n:eJIeHa paBHoMepHo Ha oTpe3Ke
[a, b), T. e. X "" R[a, b]. HaitTH BepoHTHoCTb nona,n:aHHH c. B. X Ha OTpe30K [a,.8), II;eJIHKOM co,n:ep:>KamHitCH BHyTpH oTpe3Ka [a, b].
Q BocnoJIb3yeMcH H3BecTHoit q,0PMYJIOit
{3
Pia ~ X ~.8} = Jf(x)dx,
a
r,n:e nJIOTHOCTb BepOHTHOCTH c. B. x"" R[a, b] HMeeT BH,n:
-Ib , X E [a,b), f(x) = { - a
0, xi [a,b].
|
{3 |
|
1{3.8 - a |
|
|
I |
I |
||
Pia ~ X ~.8} = PiX E [a,.8]} = J-b- dx = -b- ·x |
= -b-' |
|||
|
-a |
-a |
a |
-a |
|
a |
|
|
|
T.e. OKOHqaTeJIbHO PiX E [a,.8]} |
.8-a |
|
|
• |
= -b--' |
|
|
||
|
-a |
|
|
|
6.11.14. TIJIOTHOCTb BepoHTHoCTH HenpepbIBHoit CJIyqaitHoit BeJIHqHHbI X
HMeeT BH,n:
f(x) = {0,25 . A, |
x E [0,4], |
0, |
xi [0,4]. |
HaitTH A, F(x), M(X), D(X), u(X), PiX E [0; I,l]}.
Q K09q,q,HII;HeHT A
BepOHTHOCTH
J00 f(x)dx = 1.
- 00
376
Ih1eeM |
00 |
0 |
4 |
00 |
j I(x)dx= |
jOdx+ jO,25Adx+ jOdx=l, |
||
-00 |
-00 |
0 |
4 |
T. e. 0,25Axl~ = 1. OTCIO,ll;a CJIe.rr.yeT, 'ITOA = 1. IlTaK,
I(X)={~' XE[0,4),
0, xi [0,4),
II, 3Ha'IHT,CJIY'IaitHruIBeJIH'IHHaX paBHOMepHO pacnpe,ll;eJIeHa Ha OTpe3Ke
[0,4),
<I>YHKIJ;H8 pacnpe,ll;eJIeHH8 ,ll;JI8 c. B. |
X""" R[0,4) HMeeT BH,ll; |
O, |
x ~ 0, |
F(x) = { i, |
< x ~ 4, |
|
° |
1, |
4 < x. |
qHCJIOBbIe xapaKTepHCTHKH 9Toro pacnpe,ll;eJIeHH8 TaKOBbI:
M(X) = [a~b] = 0~4 =2,
|
D(X) = [(b-a)2] |
_42 -1 |
||||||
|
|
12 |
|
|
- |
12 - |
3' |
|
|
|
f'TV"V\] |
= |
2 |
2va |
|||
|
a(X) = [V D(X) |
va |
= -3-' |
|||||
Bepo8THoCTb nOna,IJ;aHH8 c. B. X |
B |
npOMe:>KYTOK [OJ 1,1) HaxO,ll;HM, HC- |
||||||
IIOJIb3Y8 <P0PMYJIY P{X E |
[0'., (3l) = |
(3-0'. |
(CM. 3a,IJ;a'IY 6.11.13). OTCIO,ll;a |
|||||
b _ |
a |
|||||||
P{X E [OJ I,ll} = 141_-0° = |
141 = 0,275. |
|
|
|
• |
|||
6.11.15. |
HeKTo O:>KH,ll;aeT TeJIe<poHHbIit 3BOHOK Me:>K.rr.y 19.00 H 20.00. BpeM8 |
|||||||
|
O:>KH,ll;aHH8 3BOHKa eCTb HenpepbIBHruI c. B. X, HMelOIIJ;ruI paBHOMep- |
|||||||
|
Hoe pacnpe,ll;eJIeHHe Ha OTpe3Ke [19,20). HaitTH Bep08THOCTb Toro, |
|||||||
|
'ITO3BOHOK nocTynHT B npOMe:>KYTKe OT 19 'lac22 MHHYT,ll;O 19 'lac |
|||||||
|
46 MHHYT. |
|
|
|
|
|
|
|
6.11.16. |
CJIY'IaitHruI BeJIH'IHHa X, |
pacnpe,ll;eJIeHHruI paBHoMepHo, HMeeT |
||||||
|
CJIe.rr.yIOIIJ;He 'IHCJIOBblexapaKTepHcTHKH |
M(X) = 2, D(X) = 3. |
||||||
|
HaitTH F(x). |
|
|
|
|
|
|
|
6.11.17. |
IIpo C.B. X H3BeCTHO, 'ITOX """ |
R[4, 7). HaitTH: |
||||||
|
a) I(x)j |
|
|
|
6) M(X) H a(X)j |
|||
B) P{X E (6j6,81)}.
6.11.18.«PYHKIJ;H8 pacnpe,ll;eJIeHH8 HenpepbIBHoit CJIY'IaitHoitBeJIH'IHHbIX
HMeeT BH,ll;, YKa3aHHbIit Ha pHC. 90. HaitTH aHaJIHTH'IeCKHeBbIpa-
:>KeHH8,ll;JI8 F(x), I(x), M(X) H D(X).
6.11.19.HenpepblBHruI CJIY'IaitHruIBeJIH'IHHaX HMeeT nOKa3aTeJIbHOe pacnpe,ll;eJIeHHe. HaitTH Bepo8THoCTb nona,IJ;aHH8 c. B. X B HHTepBaJI
(a, b), r,ll;e a ~ 0.
377
|
|
F(x) |
|
|
|
|
|
|
|
1 -------------------------- |
|
|
.=,-_.---- |
|
|
|
-2 |
-1 0 |
|
|
6 |
x |
|
|
|
Puc. |
90 |
|
|
|
|
a BOCrrOJIb30BaBIIIHcb <POPMYJIOit |
|
|
|
|
|
||
|
|
|
|
(3 |
|
|
|
|
|
P{a ~ X ~,B} = |
j I(x)dx, |
|
|
||
|
|
|
0< |
|
|
|
|
|
|
b |
|
|
b |
|
|
|
P{a < X < b} = j-Xe- Ax dx = -e-AX!a = _e- Ab + e- Aa , |
|
|||||
|
|
a |
|
|
|
|
|
T.e. P{X E (a,b)} = e- Aa - e- Ab . |
|
|
|
|
|
||
3TOT JKe pe3YJIbTaT MOJKHO rrOJIY'IHTb,HCrrOJIb3YH <POPMYJIY |
|
||||||
|
|
P{a < X < b} = F(b) - |
F(a). |
|
|
||
TaK KaK F(x) = 1 - |
e- AX , X ;:: 0, TO |
|
|
|
|
|
|
|
P{a < X < b} = (1- e- Ab ) - |
(1- e- Aa ) = e- Aa _ e- Ab . |
• |
||||
6.11.20. |
BpeMH T BbIxo,n:a H3 CTPOH pa,n:HOCTaHII;HH rro,n:'IHHeHOrrOKa3aTeJIb- |
||||||
|
HOMY 3aKOHY pacrrpe,n:eJIeHHH C rrJIOTHOCTbIO |
|
|
||||
|
|
FT(t) = {0,2 . e-O,2t, |
rrpH |
t;:: 0, |
|
|
|
|
|
0, |
|
rrpH |
t < O. |
|
|
|
HaitTH: <PYHKII;HIO pacrrpe,n:eJIeHHH FT(t); MaTeMaTH'IeCKOeOJKH,n:a- |
||||||
|
HHe H ,n:HCrrepCHIO CJIY'IaitHoitBeJIH'IHHbIT; BepOHTHOCTb TOrO, 'ITO |
||||||
|
pa,IJ,HOCTaHII;HH COXpaHHT pa60TOCrroco6HOCTb OT 1 ,n:o 5 'lac.pa6o- |
||||||
|
TbI. |
|
|
|
|
|
|
6.11.21. |
C. B. X pacrrpe,n:eJIeHa rro rroKa3aTeJIbHoMY 3aKoHY C rrapaMeTpoM |
||||||
|
-X = 0,4. |
HaitTH ,n:H<p<pepeHII;HaJIbHYIO H HHTerpaJIbHYIO <PYHKII;HH |
|||||
|
pacrrpe,n:eJIeHHH (T. e. I(x) H |
F(x)), |
a(X), a TaKJKe BepOHTHOCTb |
||||
|
rrOrra,IJ,aHHH 3Ha'IeHHitc. B. X B HHTepBaJI (0,25; 5). |
|
|
||||
6.11.22. |
C.B. X, KOTOPM paBHa ,n:JIHTeJIbHOCTH pa60TbI 9JIeMeHTa, HMeeT |
||||||
|
rrJIOTHOCTb pacrrpe,n:eJIeHHH I(t) |
= O,003e-O,003t, t |
;:: 0. |
HaitTH: |
|||
|
cpe,n:Hee BpeMH pa60TbI 9JIeMeHTa; BepoHTHoCTb Toro, 'ITO9JIeMeHT |
||||||
|
rrpopa6oTaeT He MeHee 400 'IacOB. |
|
|
|
|||
378
6.11.23. Cpe,lJ;mul npO,lJ;OJDKHTeJIbHOCTb TeJIe<poHHoro pa3rOBOpa paBHa
3 MHH. HalI:TH BepOHTHOCTb Toro, qTO npOH3BOJIbHbIit TeJIe<poH-
Hblit pa3rOBOp 6Y,lJ;eT npO,lJ;OJDKaTbCH He 60JIee 9 MHHyT, CqHTM, qTO BpeMH pa3rOBOpa HBJIHeTCH c. B. X, pacnpe,lJ;eJIeHHoit no nOKa3aTeJIbHOMY 3aKoHY.
6.11.24. Onpe,lJ;eJIHTb 3aKOH pacnpe,lJ;eJIeHHH CJIyqaitHoit BeJIHqHHbI X, eCJIH
ee nJIOTHOCTb BepoHTHoCTH HMeeT BH,lJ;
I(x) = A . e- x2 + 2x+1.
|
HaitTH: |
|
6) u(X); |
|
|
|
a) M(X); |
|
|
|
|
|
B) 3HaqeHHe K09<P<PHII;HeHTa A; |
r) M(X2); |
|
|
|
o |
.u.) P{1 < X < 3}. |
|
|
(x _ 1)2 |
|
CPaBHHB ,lJ;aHHYlO <PYHKII;HlO |
|
- |
2· (~) |
2 |
|
I(x) = A· e- x2 + 2x+1 = A· e-(x-1)2+2 = A· e 2 . e-(x-1)2 = A . e2 . e |
|
||||
C nJIOTHOCTblO |
1 |
_ (x - a)2 |
|
|
|
|
I(x) = |
|
|
||
|
. e |
20'2 |
|
|
|
u·.j2;
HOpMaJIbHOrO pacnpe,lJ;eJIeHHH, 3aKJIlOqaeM, |
qTO c. B. X HMeeT HOpMaJIbHOe |
||||
pacnpe,lJ;eJIeHHe. |
|
|
|
|
|
a) OqeBH,lJ;HO, M(X) = 1. |
|
|
|
|
|
1 |
|
|
|
|
|
6) u(X) = y'2' |
|
|
|
|
|
B) 3HaqeHHe K09<P<PHII;HeHTa A Hait,lJ;eM H3 paBeHCTBa A . e2 = |
~, |
||||
r,lJ;e u = ~ ~ 0,71. OTClO,lJ;a |
|
|
u· |
211' |
|
|
|
|
|
||
A = |
|
1 |
|
1 |
|
|
e2 ._1 . y'2. y'7i e2 ."y'7i· |
|
|||
|
V2 |
|
|
|
|
CJIe,lJ;OBaTeJIbHO, nJIOTHOCTb BepoHTHoCTH c. B. X HMeeT BH,lJ; |
|
||||
|
|
|
|
(x - 1)2 |
|
I(x) = |
1 |
.e2.e-2·(~r |
|
||
|
e2 |
. y'7i |
|
|
|
T.e. |
|
|
|
(x - 1)2 |
|
|
|
|
|
|
|
I(x) = |
1 |
.e |
2·(~r |
|
|
|
_1 . .j2; |
|
|
||
V2
aCHO, qTO X'" N (1; ~).
r) M(X2) Hait,lJ;eM, HCnOJIb3YH <POPMYJIY D(X) ,= M(X2) - (M(X»2. B
Ra1IIeM cJIyqae M(X) = 1, D(X) = (U(X»2 = ~. II09ToMY
M(X2) = D(X) + (M(X»2 = ~ + 1 = ~.
379
