Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Сборник задач по высшей математике 2 том

.pdf
Скачиваний:
68
Добавлен:
15.03.2015
Размер:
27.38 Mб
Скачать

~K6aHmUJlb70 yp06'HJ1 p C. B. X Ha3hIBaeTClI qHCJIO X p , y,!l;OBJIeTBOplIIO~ee ypas-

HeHHIO P{X < Xp} = p. ~

TaxHM 06pa30M, Xp lIBJIlIeTClI pemeHHeM ypaBHeHHlI F(xp) = p. B qacTHOCTH,

XO,5 = Me(X).

6.10.1. 3a,u.aH 3aKOH pacrrpe,ll;eJIeHHH,lJ,. c. B. X:

HaitTH MaTeMaTH"!eCKHe O>KH,lJ,aHHH H ,lJ,HCrrepCHH CJIy"!aitHblx BeJIH"!HH X, -2X, X2.

<) CHa"!aJIa Hait,ll;eM MaTeMaTH"!eCKHe O>KH,lJ,aHHH ,lJ,aHHbIX BeJIH"!HH. IIcrroJIb- n

3yH <P0PMYJIY M(X) = E XiPi, HaXO,lJ,HM i=l

6

M(X) = L XiPi = -2 ·0,1-1·0,2 +0 ·0,25+ 1·0,15+ 2 ·0,1 + 3·0,2 =0,55.

i=l

,IVrH HaxO>K,ll;eHHH M( -2X) BOCrrOJIb3yeMcH CBOitCTBOM MaTeMaTH"!eCKOrO O>KH,ll;aHHH: M(CX) =C·M(X).IIMeeM: M(-2X) = -2·M(X) =-2·0,55 =

= -1,1.

3aKOH pacrrpe,lJ,eJIeHHH c. B. X 2 3arrHweM B BH,lJ,e Ta6JIHn;bI pacrrpe)J,eJIeHHH:

rro orrpe,ll;eJIeHHlO ,lJ,HCrrepCHH HMeeM:

6

D(X) = L(Xi - M(X))2 . Pi =

i=l

= (-2 - 0,55)2. 0,1 + (-1- 0,55)2·0,2 + (0 - 0,55)2. 0,25+ + (1 - 0,55)2 ·0,15 + (2 - 0,55)2 ·0,1 + (3 - 0,55)2 ·0;22 = 2,6475.

9TY >Ke BeJIH"!HHY MO>KHO HaitTH rrpOln;e, HCrrOJIb3YH <P0PMYJIY

D(X) = M(X2) - (MX)2.

,ll;eitcTBHTeJIbHO, M(X2) =2,95, (M(X))2 =0,552 =0,3025. CJIe)J,oBaTeJIbHO,

D(X) =2,95 - 0,3025 =2,6475. ,ll;aJIee,

D( -2X) = (_2)2 D(X) =4 . 2,6475 =10,59;

D(X2) = (0 - 2,95)2 ·0,25 + (1 - 2,95)2 ·0,35 + (4 - 2,95)2·0,2+

+ (9 - 2,95)2 ·0,2 = 11,0475.

360

nOCKOJIbKY PH,n: pacnpe,n:e.neHIUI ,n:. C. B. X 4 HMeeT BH,n:

TO D(X2) MO}l{HO HaAm npOrn;e:

D(X2) = M(X4) - (MX2)2 = 02·0,25+ 12 .0,35+42.0,2+92·0,2- (2,95)2 =

= 19,75 - 8,7025 = 11,0475. •

6.10.2. BpomeHbI 10 HrpaJIbHbIX KocTeA. HaATH M(X), D(X) U a(X), r,n:e c. B. X - cYMMa O'IKOB,BbmaBmHX Ha Bcex HrpaJIbHbIX KOCTHX.

a 0603Ha'lHM'1epe3Xi (i = 1,2, ... ,10) '1UCJIOO'IKOB,BbmaBmux Ha i-A KOCTH. Tor,n:a X = Xl + X 2 + X3 + ... + X lO . CJIY'IaAHbleBeJIH'IHHbIXl,

X2, ... , XlO HMeIOT O,n:HHaKOBble 3aKOHbI pacnpe,n:eJIeHUH, nOSTOMY M(Xl ) =

= M(X2) = ... = M(XlO) U D(Xl ) =

D(X2) =

... = D(XlO). II TaK KaK

C. B. Xi (i = 1,2, ... ,10) He3aBucuMbI, TO

 

 

 

M(X) = M(Xl + X 2 + ... + X lO ) = M(Xl ) + M(X2) + ... + M(XlO) =

 

 

 

 

 

 

 

= 10· M(Xl ),

D(X) = D(Xl +X2+ .. .+XlO ) = D(Xl )+D(X2)+ ...+D(XlO ) = lO·D(Xl ).

3aKOH pacnpe,n:eJIeHU11 C. B. Xl HMeeT BH,n:

 

 

 

Xl,i

1

2

3

4

5

6

 

Pi

1

1

1

1

1

1

 

6

6

6

6

6

6

 

IIoSTOMY, Y'IHTbIBaH,'ITO

 

 

 

 

 

 

 

D(X) = M(X)2 -

 

 

 

n

 

 

 

(M(X))2 = Lx~. Pi - (MX)2,

 

 

 

 

 

i=l

 

 

UMeeM

 

 

 

 

 

 

 

M(Xd = 1 . ~ + 2 . ~ + ... + 6 . ~ = ~,

 

 

 

 

D(Xl) = (12. ~ + 22. ~ + 32 . ~ + ... + 62

.~) _ (~)2 = 9i _ 4j = ~~.

CTaJIO 6bITb, M(X) = 10· M(Xl )

= 10· ~

= 35, D(X) = 10· D(Xl ) =

~ 10· ~~ = 1~5 = 29~, a(X) = ..jD(X) = Jl~5 ~ 5,4.

6.10.3. 3aKOH pacnpe,n:e.neHHH ,n:. c. B. X 3a,n;aH Ta6JIun;eA pacnpe,n:e.neHuH

Xi

1

2

3

4

Pi

1

1

1

C

8

4

3

HahH c, M(X), D(X), a(X), P{X < 3}.

361

6.10.4. <l>YHKD;HH pacnpe.IJ:eJIeHHH .IJ:. c. B. X HMeeT BU.IJ:

0,

x:::; 0,

0,2,

0< x:::; 1,

F(x) = 0,6,

1 < x :::; 2,

0,9,

2 < x:::; 3,

1,

3 < x.

Hathu M(X), M(X2), D(X), a(X).

6.10.5. He3aBHcHMo ucnbiTbIBaIOTCH Ha Ha,n;e:lKHOCTb 3 npu6opa. BepoHT-

HOCTH BbIXO.IJ:a U3 CTPOH Ka:lK.IJ:OI'OnpH60pa 0.IJ:UHaKOBbi U paBHbi 0,6.

HaiiTH M(X) U a(X), r.IJ:e c. B. X - '1HCJIOBblille.IJ:illHX U3 CTPOH npu6opoB.

6.10.6. HaiiTU MaTeMaTH'IeCKOeO:lKH.IJ:aHHe CYMMbi '1UCJIaO'IKOB,KOTopble

 

Bbma,n;aIOT npu 6pocaHuu .IJ:BYX UrpaJIbHbiX KocTeit.

 

6.10.7.

CJIY'IaitHbieBeJIU'IHHbi X U

Y He3aBUCHMbJ, npU'IeMD(X) =

2

 

U D(Y) = 6. HaiiTU D(Z), eCJIU Z = 12· X - 3Y + 2.

 

Q Ha OCHOBaHUH CBOitCTB .IJ:UCnepCHU (1-4) nOJIY'IaeM:

 

D(Z) = D(12X - 3Y + 2) = 144· D(X) + 9 . D(Y) =

 

 

 

= 144 . 2 + 9 . 6 = 342.

6.10.8.

MaTeMaTH'IeCKOeO:lKH.IJ:aHHe H .IJ:HCnepCHH c. B. X COOTBeTCTBeHHO

 

paBHbi ~ H ~~. HaitTu MaTeMaTU'IeCKOeO:lKH.IJ:aHUe U .IJ:uCnepCuIO

 

CJIY'IaitHoitBeJIU'IHHbi4X -

1.

 

Q COrJIacHo CBoitcTBaM MaTeMaTH'IeCKOrOO:lKU.IJ:aHUH U .IJ:Ucnepcuu, nOJIY-

'1aeM:

 

 

 

M(4X -1) = M(4X) +M(-l) = 4M(X) -1 = ~ -1 = 13;

 

D(4X -1) = 16· D(X) = 16. ~~ = 1~0.

6.10.9.

He3aBucuMbie CJIY'IaiiHbieBeJIU'IUHbiX U Y 3a,n;aHbi Ta6JIUD;aMU

 

pacnpe.IJ:eJIeHUHBepoHTHocTeit

 

 

U

 

 

 

Pi

~P~'~'L-~~~~~~

 

 

HaitTH D(X +Y) .IJ:BYMH cnoco6aMu: 1) COCTaBUB npe.IJ:BapHTeJIbHO

 

Ta6JIuD;y pacnpe.IJ:eJIeHUH c. B. Z = X + Y; 2) HCnOJIb3YH npaBUJIO

 

CJIO:lKeHUH .IJ:ucnepcuit.

 

 

6.10.10.

HaitTu M(X) U a(X) .IJ:JIH CJIY'IaiiHOitBeJIH'IUHbI

 

i=l

r.IJ:e Xi (i = 1,2, ... , n) - He3aBHCUMbie .IJ:HCKpeTHbie CJIY'IaitHbJe BeJIU'IUHbI,UMeIOID;ue O.IJ:HO U TO :lKe MaTeMaTH'IecKoeO:lKU.IJ:aHUe a

U OMY H TY :lKe .IJ:UCnepCUIO a2

362

6.10.11. BepoHTHoCTb nOHBJIeHHH C06bITHH A B KIDK,n;OM He3aBHCHMOM HCnbITaHHH o,n;HHaKOBa H paBHa p. HaitTH 9TY BepOHTHOCTb, eCJIH ,lI;J1H ,n;. C. B. X = {'1HCJIOnOHBJIeHHit C06bITHH A B 5 HcnbITaHHHx} ,n;HC-

nepCHH paBHa D(X) = 1,25.

6.10.12. BepoHTHoCTb TOro, 'ITO cTy,n;eHT C,n;acT 9K3aMeH Ha «5», paBHa

0,2, Ha «4» - 0,4. Onpe,n;eJIHTb BepOHTHOCTH nOJIY'leHHHHM on;e- HOK «3» H «2», eCJIH H3BeCTHO, 'ITOM(X) = 3,7, r,n;e,n;. c. B. X -

On;eHKa, nOJIY'leHHMcTy,n;eHTOM Ha 9K3aMeHe. 6.10.13. ,naH PH,n; pacnpe,n;eJIeHHH C.B. X:

HaitTH Ha'laJIbHbleH n;eHTpaJIbHble MOMeHTbI nepBblx '1eTblpexnoPH,n;KOB.

6.10.14. IIJIOTHOCTb BepoHTHoCTH c. B. X 3a,n;aeTCH <POPMYJIOit

f(x) = {236 (X - 3)2,

X E [0,2],

0,

x 1. [0,2].

HaitTH ee '1HCJIOBblexapaKTepHcTHKH: MaTeMaTH'IeCKOeOJKH,n;aHHe, ,n;HcnepCHIO, cpe,n;HeKBa,n;paTH'IeCKOeOTKJIOHeHHe, aCHMMeTpHIO H 9KCn;ecc.

Q Hait.n;eM MaTeMaTH'IeCKOeOJKH,n;aHHe:

 

00

 

 

 

 

0

 

2

 

3

 

+00

 

M(X)=

jx·f(x)dx=

jx.Odx+jx·

(x-3)2dx+

jx.Odx=

 

 

 

 

 

 

 

 

 

 

 

26

 

 

 

- 00

 

 

 

- 00

 

0

 

 

 

2

 

2

 

 

 

 

 

 

 

 

 

 

 

 

JL '" °692

 

- ~ .f(

x

3 -

6

x

2

9) d

-

~ (X4 _ 2 3

+

9 . X2) 120 --

.

- 26

 

 

 

+ x

x -

26

4

x

2

13 "',

o

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tenepb OTbIIII;eM .n;HCnepCHIO:

 

 

 

 

 

 

 

00

 

 

 

 

 

 

 

 

 

 

 

 

D(X) =

j (x - M(X))2 . f(x) dx =

 

 

 

 

 

- 00

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

13 )2. 236 (x -

 

 

2

 

 

 

 

= j(x -

3)2 dx = 236 j(x2 -1~x+ iD2 dx =

 

 

 

 

9

 

 

 

 

 

 

 

 

 

 

o

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

2

 

9

 

 

 

 

 

 

 

 

 

 

 

= ;6· j[(x -

3)f dx =

 

 

 

 

 

 

 

 

13) (x -

 

 

o

363

 

 

00

 

 

 

 

2

 

 

 

 

2

 

 

D(X) = !

2

 

 

 

 

2

3

 

 

9

=

 

X . f(x) dx - (M(X))2 = !X

. 26 (x - 3)2 dx -

(13)

 

 

 

-00

 

 

 

 

0

 

 

 

 

 

 

 

 

2

 

 

 

 

(JL)2 = 1- (X5

_ 6. X4 + 9. X3) 12 _R

_

= 1- f(x 4 _ 6x3 + 9x2) dx _

26

o

 

 

 

 

13

26

5

 

4

3

0

169-

 

 

24 + 24) - 1869 = ~6~~ - 1i9 = :~ - 1869 = ~!~ ~ 0,259.)

 

= 26 (325 -

 

3

 

 

 

 

1

 

 

8

 

 

1

 

 

 

 

OTCIO.IJ:a Hait.IJ:eM Cpe.IJ:HeKBMpaTHqeCKOe OTKJIOHeHHe:

 

 

 

 

 

 

 

 

a(X) = JD(X) = JO,259 ~ 0,509.

 

 

 

 

HaKOHen;, BblqHCJIHM acHMMeTpHIO:

 

 

 

 

 

 

 

 

A = J1.3

=

 

 

2

JL)3 .1- . (x -

 

~

 

 

 

 

1

.

fI(x _

3)2 dx

 

 

 

 

 

a3

(0,509)3

II

13

26

 

 

 

 

 

 

 

 

 

 

 

2

_ 105 X4 + 3870 x3 _ 60750 x2 + 32805 x _ 6561) dx =

'" _1_ . 1- fI(X5

,... 0,132

26

JI

 

13

169

2197

2197

 

2197

 

 

 

 

 

o

_ 105x5 + 3870x4 _ 60750x3 + 32805x2 _ 6561X) 12

'"

= 1- . _1_ (X6

26

0,132

6

13· 5

169·4

2197·3

2197· 2

2197

0

'"'"

 

 

 

 

 

 

 

 

 

 

 

 

 

~ 0,634.

 

H 3KCn;ecc:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

E = ~: - 3 ~ 0,~67

2

 

 

 

 

3)2 dx - 3 =

 

 

 

. !(x - {3f . 26 . (x -

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

o

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

= 1- . _1_. fI(X6 _ 114 x5 + 4815 x4 _ 95580 X3+

 

 

 

 

 

26

0,067 JI

 

13

 

169

2197

 

 

 

 

 

 

 

 

o

 

380538 x + 59049) dx -

 

 

 

 

 

 

 

 

+973215 x 2 _

3'" -0545

 

 

 

 

 

28561

 

28561

 

28561

 

, ... , .

 

 

6.10.15. ,naHa nJIOTHOCTb pacnpe.IJ:eJIeHHg BepOgTHOcTeit CJIyqaitHoit BeJIHqHHbI X:

O,

npH x < 0,

f(x) = { ~. x,

npH 0 ~ x < 4,

0,

npH 4 ~ x.

HaitTH M(X), D(X) H a(X).

6.10.16. TIJIOTHOCTb pacnpe.IJ:eJIeHHg c. B. X

f(x) = {oX. e-AX ,

x ~ 0,

(oX> 0),

0,

x < O.

 

HaitTH M(X), D(X), a(X).

 

 

364

6.10.18. llJIOTHOCTb BepoHTHocTeA CJIY'IaAHoABeJIH'IHHbIX

6.10.17. CJIY'IaAHruIBeJIH'IHHaX "pHHHMaeT IIOJIo:lKHTeJIbHbIe 3Ha'leHHH, HMeeT IIJIOTHOCTb BepoHTHocTeA f(x) = -ax2 + 2ax. RaATH 3Ha- '1eHHenapaMeTpa a H MaTeMaTH'IecKoeo:lK:Jf,Il;aHHe C. B. X.

paBHa

1

, IIpH - 10 < x < 10,

f(x) = { 11" V100 -

x2

0,

IIpH Ixl ~ 10.

RaATH M(X), D(X), a(X).

6.10.19. llJIOTHOCTb pacIIpe,ll;eJIeHHH c. B. X 3a,ll;aHa B BH,Il;e

1 .

IIpH 0 ~ X < 11",

f(x) = { 2smx,

0,

IIpH 0 < X H X ~ 11".

HaATH M(X) H D(X).

6.10.20. HaATH MO,Il;y, Me,Il;HaHY, MaTeMaTH'IecKoeo:lKH,Il;aHHe H KBaHTHJIb

YPOBHH 0,75 CJIY'IaAHoABeJIH'IHHbIC IIJIOTHOCTblO BepOHTHOCTH

_4Z2

, IIpH X ~

0

f (x) = {8x . e

,

0,

IIpH X < O.

a HaA,Il;eM TO'lKYMaKCHMYMa <PYHKII.UH f(x):

!,(x) = 8e-4z2 + 8x· e-4z2 (-8x) = 8e-4z2 (1 - 8x2 )j

OTCIO,Il;a f'(x) = 0 IIpH X = \" TO'lKax =

\, HBJIHeTCH TO'lKOAMaKCH-

2v2

 

2v2

MyMa <PYHKII,HH f(x) (TaK KaK, eCJIH x <

1M

, TO f'(x) > 0, a ecJIH x> 1M ,

 

2v2

2v2

TO f'(x) < 0). CJIe.n;oBaTeJIbHO, MO,Il;a Mo(X) = 1M ~ 0,35.

 

 

2v 2

Me,Il;HaHa Me(X) = Xl OIIpe,Il;eJIHeTCH KaK 3Ha'leHHeCJIY'IaAHoABeJIH'IH-

HbI, KOTopoe ,Il;eJIHT IIJIOIlIa,ll;b <PHrYPbI, OrpaHH'IeHHOArpa<pHKOM <PYHKII,HH

f(x), Ha ,Il;Be paBHbIe '1acTH.l109TOMY

 

 

ZI

+00

!8x . e-4z2 dx = ~ (HJIH:

!

8x. e-4z2 dx = ~),

o

ZI

ZI

4z2 d(-4x2)

1 T.e.

_ e-4-

 

Io

 

= _~,

- !e-

2

1

 

= 2'

~

Z

 

 

 

 

 

 

o

", CJIe,Il;OBaTeJIbHO, e-4zi = ~. OTCIO,Il;a HaXO,Il;HM:

Xl = MeX = ~v'ln2 ~ 0,42.

365

Haxo,n:HM MaTeMaTH'IeCKOeO>ICH,n:aHHe C. B. X:

 

00

 

 

0

 

+00

 

 

 

M(X)= IX'f(x)dx=

Ix.Odx+

Ix.8x2 .e-4X2 dx=

-00

 

-00

 

0

 

 

 

 

 

 

 

 

M

 

 

 

 

 

 

= 8 lim

Jx . x2 . e-4x2 dx =

 

 

 

 

 

M--++oo o

 

 

 

 

[no '1acTlIM:U = x2,du = 2xdx, dv = X· e-4x2 dx, v = _le-4X2 ]

= 8 lim

(_1. x2 . _I_1M + ~ I:' e-4x2 dX)

=

 

M --++00

8

 

e4x2 0

8

°

 

 

 

 

 

_ ~ 1~-4X2d(_4X2))

 

 

= lim

( -

M22

= _1 lim

e-4x2 1M =

M--++oo

e4M

8 o

 

 

4 M--++oo

0

 

 

= _1

lim (e- 4M2 -

1) = -1(0 -

1) = 1 = 0,25.

 

 

 

4

M--++oo

 

4

 

4

Hait,n:eM

<PYHKII,HIO

pacnpe,n:eJIeHHlI c. B. X. IIpe,n:BapHTeJIbHo 3aMeTHM,

'ITOeCJIH x < 0, TO

 

 

x

 

x

 

 

 

 

 

 

 

 

 

 

 

 

 

F(x) = 1

f(t)dt = 1 Odt = 0.

 

 

 

 

 

 

-00

 

-00

 

 

 

ECJIH :lKe x ~ 0, TO

 

 

 

 

 

 

 

 

F(x) = Jf(t) dt = J°dx + J8t· e-4t2 dt = _e-4t2 1: = _e- 4x2 + 1,

-00

 

-00

 

0

 

 

 

 

T.e. F(x) = l_e- 4x2 , x ~ 0.

KBaHTHJIb XO,75 HaxO,n:HM H3 paBeHCTBa F(XO,75) = 0,75. IIMeeM:

1 -

e-4X~.75 = 0,75.

OTcIO,n:a Haxo,n:HM, 'ITOXO,75 =

~v'ln4 ~ 0,59.

KPHBM pacnpe,n:eJIeHHlI (c. B. X pacnpe,n:eJIeHa no 3aKoHY PeJIell) npe,n:-

CTaBJIeHa Ha pHC. 88.

 

6.10.21. CJIY'IaitHMBeJIH'IHHaHMeeT nJIOTHOCTb pacnpe,n:eJIeHHlI BH,n:a

f(x) =

*. x 2: a2'

a > °

(pacnpe,n:eJIeHa no 3aKOHY KOlIIH). HaitTH MO.n:y, Me,n:HaHY H KBaH-

THJIH nOpll,n:Ka p = 0,25; 0,5; 0,75.

 

6.10.22. CJIY'IaitHMBeJIH'IHHaX 3MaHa <PYHKII,Heit pacnpe,n:eJIeHHlI

O,

x ~ 2,

F(x) = { 19' (x 3 - 8),

2 < x ~ 3,

1,

x> 3.

HaitTH: M(X), Mo(X), Me(X).

366

f(x)

2 x

Puc. 88

6.10.23. IIJIOTHOCTb pacIIpe.n;eJIeHlUl c. B. X HMeeT BH.n;

f(x) = {lx2 ,

XE[0;2],

0,

x f/. [0;2].

HaitTH MO.u.y, Me.n;HaHY, MaTeMaTH'leCKOeO)lm.n;aHHe H KBaHTHJIb IIOpjf.n;Ka 0,25.

AononHIIITenbHble 3aACIHIIIH

6.10.24. HaitTH 3aKOH pacIIpe.n;eJIeHHjf .n;HcKpeTHoit c. B. X, 3HM, 'ITO:OHa "pHHHMaeT .n;Ba 3Ha'leHHjfXl H X2 (Xl < X2) H, KpOMe Toro, P(xd =

=0,4; M(X) = 2,6; D(X) = 8,64.

6.10.25.lICIIOJIb3Yjf YCJIOBHe 3a.n;a'lH6.8.3, HaitTH MaTeMaTH'IeCKOeO)l{H.n;a- HHe H .n;HCIIepCHIO c. B. Z.

6.10.26.lICIIOJIb3Yjf YCJIOBHe 3a.n;a'lH6.8.5, HaitTH cpe.n;Hee 3Ha'leHHe'1HCJIa oIIycKaHHit MOHeT B aBTOMaT.

6.10.27.lICIIOJIb3Yjf YCJIOBHe 3a.n;a'lH 6.8.9, HaitTH M(X), D(X) H a(X), r.n;e X - '1HCJIOIIepBOpa3pjf.n;HHKOB cpe.n;H .n;BYX BbI6paHHblx Hayra.n; CiiopTcMeHoB.

6.10.28.lICIIOJIb3Yjf YCJIOBHe 3a.n;a'lH6.8.10, HaitTH:

a)M(X) H M(X2) .n;JIjf <PYHKII,HH H3 YCJIOBHjf 3a.n;a'lH6.8.10 a;

6)D(X) H a(X) .n;JIjf <PYHKII,HH H3 YCJIOBHjf 3a.n;a'lH6.8.10 6.

6.10.29.lICIIOJIb3Yjf YCJIOBHe 3a.n;a'lH6.8.11, HaitTH M(X), M(X2), D(X),

D(X2).

6.10.30. lICIIOJIb3Yjf YCJIOBHe 3a.n;a'lH6.8.16, HaitTH M(X) H M(Y).

6.10.31. lICIIOJIb3Yjf YCJIOBHe 3a.n;a'lH6.8.17, HaitTH M(Z), M(W), D(X),

D(W).

367

6.10.32. IIPOH3BO,II.HTClI ,n:Ba He3aBHCHMbIX BbICTpeJIa. BepOllTHOCTb rro-

rra,n:aHHlI rrpH K~,n:OM BbICTpeJIe rrOCTOllHHa. RaihH ,n:HcrrepCHIO

c. B. X - '-IHCJIarrorra,n:aHHA, eCJIH M(X) = 1,6.

6.10.33."tJeJIOBeK HaxO,n:HTClI B Ha'laJIerrpllMoyroJIbHOA CHCTeMbI KOOp,n:H- HaT. OH rro,n:6pacbIBaeT MOHeTY. IIPH rrOllBJIeHHH rep6a ,n:eJIaeT mar

 

HarrpaBO, rrpH rrOllBJIeHHH pemKH - mar HaJIeBO (.D:JIHHa mara paB-

 

Ha o,n:HoA e,n:HHHII,e MacmTa6a). IIYCTb X - a6CII,HCCa rrOJIO)KeHHH

 

'1eJIOBeKarrOCJIe Tpex 6pocaHHA. RaATH M(X) H D(X).

6.10.34.

MCrrOJIb3YlI YCJIOBHe 3a,n:a'lH6.10.13, HaATH acHMMeTpHIO H 9KCII,eCC

 

C.B. X.

 

 

6.10.35.

CJIY'IaAHMBeJIH'IHHaX 3a,n:aHa rrJIOTHOCTbIO pacrrpe,n:eJIeHHlI

 

f(x) = {

10 - 2x

rrpH 2 ~ x ~ 5,

 

9'

 

 

0,

B OCTaJIbHbIX CJIY'IMX.

BbI'IHCJIHTb:M(X), Ha'laJIbHbIeMOMeHTbI BToporo H TpeTbero rro-

pll,n:Ka, D(X).

6.10.36. IIJIOTHOCTb pacrrpe,n:eJIeHHlI BepOllTHOCTeA HerrpepbIBHoA cJIY'IaAHoA BeJIH'IHHbIX 3a,n:aHa <P0PMYJIoA

_1_

x E [-1'2]

f(x) = { l'+ l'

: '

0,

x 1- [-1,2].

RaATH: rrapaMeTp 1', M(X) H D(X).

6.10.37. CJIY'IaAHMBeJIH'IHHaX 3a,n:aHa rrJIOTHOCTbIO pacrrpe,n:eJIeHHlI

f(x) = {* .sin2 x,

x E [0; 7rJ,

0,

x 1- [0; 7r].

RaATH M(X) H D(X).

6.10.38. MCrrOJIb3YlI YCJIOBHe 3a,n:a'lH6.9.6, HaATH M(X), D(X) H a(X). 6.10.39. MCrrOJIb3YlI YCJIOBHe 3a,n:a'lH6.9.11, HaATH:

a) M(X);

6) D(X);

8)a(X).

6.10.40.MCrrOJIb3YlI YCJIOBHe 3a,n:a'lH6.9.14, HaATH:

a) M(X);

6) D(X);

B)MO.n:y C. B. X.

6.10.41.MCrrOJIb3YlI YCJIOBHe 3a,n:a'lH6.9.20, HaATH:

a) M(X);

6) D(X);

B)a(X).

6.10.42.MCrrOJIb3YlI YCJIOBHe 3a,n:a'lH6.9.27, HaATH:

a) M(X);

6) Mo(X);

B)Me(X);

r)XO,5 (KBaHTHJIb rrOpll,n:Ka p = 0,5).

6.10.43.MCrrOJIb3YlI YCJIOBHe 3a,n:a'lH6.9.30, HaATH MaTeMaTH'IecKoeO)KH- ,n:aHHe H MO.n:y C. B. X.

368

6.10.49. CJIY'IaitHaJIBeJIH'IHHaX

6.10.44. CJIY'iaitHaJIBeJIH'iHHaX 3a,rr.aHa nJIOTHOCTblO pacnpe,n:eJIeHHjJ

f(x) = {0,1, npH x E [OJ 10], 0, npH x ¢ [OJ 10].

RaitTH: M(X), D(X), Me(X), KBaHTHJIb nopjJ,n:Ka p = 0,25, p =

= 0,50 H P = 0,75.

KOHTponbHble Bonpocbl lit 60nee CnO)l(Hbie 3aACIHlltH

6.10.45. IIcnoJIb3YjJ YCJIOBHe 3a,rr.a'iH6.8.22, HaitTH cpe,n:Hee 'iHCJIOnonbITOK OTKpbITb ,n:Bepb.

6.10.46. IIcnoJIb3YjJ YCJIOBHe 3a,rr.a'IH6.8.24, HaitTH MaTeMaTH'IeCKOeO:>KH- ,n:aHHe, ,n:HcnepCHIO, MO.n:y H K09<P<PHn;HeHT aCHMMeTpHH CJIY'IaitHoit BeJIH'IHHbIX - 'IHCJIa,n:e<peKTHblx H3,n:eJIHit B BbI6opKe.

6.10.47. IIcnoJIb3YjJ YCJIOBHe 3a,rr.a'IH6.8.29, HaitTH MaTeMaTH'IeCKOeO:>KH,n:a- HHe, ,n:HcnepCHIO, n;eHTpaJIbHblit MOMeHT 'IeTBepToronopjJ,n:Ka, Ko- 9<P<PHn;HeHT 9KCn;ecca CJIY'IaitHoitBeJIH'IHHbIZ.

6.10.48. IIcnoJIb3YjJ YCJIOBHe 3a,rr.a'IH6.8.32, HaitTH MaTeMaTH'IecKoeO:>KH- ,n:aHHe 'IHCJIanpOBe,n:eHHbIX HcnbITaHHit.

npHHHMaeT 3Ha'IeHHem C BepojJTHoCTblO

Pn(m) = C::" . pm . qn-m (m = 0,1,2, ... , nj p + q = 1). RaitTH

M(X) H D(X).

6.10.50.X H Y - He3aBHCHMble CJIY'IaitHbleBeJIH'IHHbI. ,n:OKa3aTb, 'ITO

D(XY) = D(X) . D(Y) + (M(y))2 . D(X) + (M(X))2 . D(Y).

6.10.51. ,n:OKa3aTb, 'iTOm ~ M(X) ~ M, r,n:e X - .IJ:HCKpeTHaJI CJIY'IaitHaJI BeJIH'IHHa,m H M - COOTBeTCTBeHHO HaHMeHbwee H HaH60JIbWee 3Ha'IeHHjJC. B. X.

6.10.52. IIoKa3aTb, 'ITO,n:HcnepCHjJ 'IHCJIaycnexoB npH o,n:HOKpaTHOM npo-

Be,n:eHHH HcnbITaHHjJ He npeBocxo,n:HT 0,25.

6.10.53. Bblpa3HTb n;eHTpaJIbHble MOMeHTbI BToporo, TpeTbero H 'IeTBepToro

nopjJ,n:KoB 'Iepe3Ha'IaJIbHbleMOMeHTbI.

6.10.54. RenpepbIBHajJ c. B. X HMeeT nJIOTHOCTb pacnpe,n:eJIeHHjJ BepojJTHo-

cTeit BH,n:a

1

_Ix -

al

f(x) = 20" e

U

, r,n:e 0" > 0, a E lR.

RaitTH M(X) H D(X).

6.10.55. IIJIOTHOCTb pacnpe,n:eJIeHHjJ BepojJTHocTeit c. B. X 3a,rr.aHa B BH,n:e

f(X)={A'(I-X2)~,

Ixl<l,

0,

Ixl ~ 1.

RaitTH A, M(X) H D(X).

6.10.56. IIcnoJIb3YjJ yCJIOBHe 3a,rr.a'iH6.9.28, HaitTH MaTeMaTH'IeCKOeO:>KH- ,n:aHHe, Ha'IaJIbHbleH n;eHTpaJIbHble MOMeHTbI nepBoro H BToporo nopjJ,n:KOB c. B. X.

369

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]