Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Сборник задач по высшей математике 2 том

.pdf
Скачиваний:
68
Добавлен:
15.03.2015
Размер:
27.38 Mб
Скачать

~)l;HcKpeTHhIe C. B. X H Y Ha3hIBaIOTCH HeSaSUC'U.M'btMU, eCJIH He3aBHCHMbi CO-

6hITHH {X = Xi} H {Y = Yi} llpH JIlO6hIX i = 1,2,3, ... , n, j = 1,2, ... , m.

$

6.S.1.

B ypHe 4 6eJIbIX H 3 qepHbIX mapa. 11:3 Hee nOCJIe,L1;OBaTeJIbHO BhI-

 

HHMaIOT maphI .D.O nepBoro nOjfBJIeHHjf 6eJIoro mapa. llocTpoHTh

 

Pjf.D. H MHoroyrOJIhHHK pacnpe.D.eJIeHHjf .D.. c. B. X - qHCJIa H3BJIe-

 

qeHHhIX mapOB.

 

Q B03MO)J(HhIMH 3HaqeHHjfMH c. B. X jfBJIjfIOTCjf qHCJIa Xl = 1, X2 = 2, X3 =

= 3, X4 = 4. 3HaqeHHe X3 = 3, HanpHMep, 03HaqaeT, qTO nepBhdl: H BTOPOit maphI 6hIJIH qepHhIMH, a TpeTHit - 6eJIhlit.

CooTBeTcTBYIOIlIHe HM BepOjfTHOCTH PI , P2, P3, P4 Hait.D.eM, BOCnOJIh30BaB-

mHCh npaBHJIOM YMHO)J(eHHjf BepOjfTHocTeit:

PI = P{X = 1} = P{1-it map 6eJIhlit} = ~,

P2

= P{X = 2} = P{1-it map qepHhlit, 2-it - 6eJIhlit} = ¥.~ = ~,

 

3

2

4

=

4

 

P3

= P {X = 3} = '7

. "6

. 5

35'

 

 

3

2

1

4

 

1

P4

= P {X = 4} = '7

. "6

. 5 . 4 =

35'

TaKHM o6pa30M, Pjf.D. pacnpe.D.eJIeHHjf c. B. X HMeeT BH.D.

Xi 1

2

3

4

44241)

 

4

2

4

1

Pi

( KOHTPOJIh: i~Pi = '7+ '7+ 35 + 35

= 1.

'7

'7

35

35

 

 

 

 

 

MHoroyrOJIhHHK pacnpe.D.eJIeHHjf c. B. X npe.D.CTaBJIeH Ha pHC. 78.

P

4

'7

I I I I I I I I

2

:

 

 

 

'7

-----1-----

 

 

 

 

I

 

 

 

4

:

 

 

 

35

_____ ~------

~-__

--

 

1

:

:

:

 

35

-----t-----

~-----

~-----

 

o

1

2

3

4 X

Puc. 78

6.S.2. B ypHe 4 6eJIhIX H 3 qepHhIX mapa. 11:3 Hee HaY.D.aqy H3BJIeKJIH TpH mapa. RaitTH:

a) Pjf.D. pacnpe.D.eJIeHHjf .D.. c. B. Y - qHCJIa H3BJIeqeHHhIX 6eJIhIX mapOB;

340

6) BepOfiTHOCTb C06bITHfi A = {H3BJIe'"leHO He MeHee 2-x 6eJIbIX

IIIapOB}.

o a) CJIY'"IaitHMBeJIH'"IHHaY MO)l{eT npHHflTb CJIe,llj'IOIIJ;He3Ha'"leHHfI:Yo =

== 0, Yl = 1, Y2 = 2, Y3 = 3. CooTBeTcTBYIOIIJ;He HM 3Ha'"leHHfIPi Hait,Ll;eM, HCXO,Ll;fl H3 KJIaccH'"IeCKOrOonpe,Ll;eJIeHHfI BepOfiTHOCTH:

3

1

C~· cl

12

Po = P{Y = O} = C;

= 35' Pl=P{Y=I}=

C?

=35'

,7

P

= P{Y = 2} = CJ .Cl = 18

P3 = P{Y = 3} =

cg· Cl

2

~~'

C?

4

= 35·

OTCIO,LI;a pfl,Ll; pacnpe,Ll;eJIeHHfI c. B. Y HMeeT BH,LI;

 

 

 

 

 

Yi

°1

1

2

3

3

1

12

18

4

)

 

12

18

4

Pi

( KOHTPOJIb: i~Pi = 35 + 35 +

35 +

35 = 1.

35

35

35

35

 

 

 

 

 

 

 

 

 

 

 

 

 

6) Hait,Ll;eM HCKOMYIO BepOfiTHOCTb, HCnOJIb3YfI pfl,Ll; pacnpe,Ll;eJIeHHfI c. B.

Y: P(A) = P{Y ~ 2} = P{Y = 2} + P{Y = 3} =

18

4

22

 

35

+ 35 = 35·

 

6.8.3.

 

MOHeTa nO,Ll;6paCbIBaeTcfI 5 pa3. IIOCTPOHTb MHoroyrOJIbHHK pac-

 

 

npe,Ll;eJIeHHfI ,LI;. c. B. Z - '"IHCJIaBbIIIa,D;eHHit rep6a.

 

 

 

6.8.4.

 

TPH CTpeJIKa, Be,llj'IIJ;HeorOHb no u;eJIH, C,LI;eJIaJIH no O,Ll;HOMY BbI-

 

 

CTpeJIY. BepofiTHoCTH HX nOna,Ll;aHHfI B u;eJIb COOTBeTCTBeHHO paB-

 

 

HbI 0,5, 0,6,

0,8. IIOCTPOHTb pfl,Ll; pacnpe,Ll;eJIeHHfI c. B. X -

'"IHCJIa

 

 

nOna,D;aHHit B u;eJIb.

 

 

 

 

 

6.8.5.

 

BepofiTHoCTb TOI'O, '"ITO aBTOMaT npH

onYCKaHHH

O,Ll;HOit

MOHeTbI

 

 

cpa6aTbIBaeT npaBHJIbHO, paBHa 0,98. IIOCTPOHTb pfl,Ll; pacnpe,Ll;e-

 

 

JIeHHfI c. B. -

 

'"IHCJIaonycKaHHit MOHeT B aBTOMaT ,LI;O nepBoro npa-

BHJIbHOrO cpa6aTbIBaHHfI aBTOMaTa. HaitTH BepOfiTHOCTb Toro, '"ITO 6Y,LI;eT onYIIJ;eHO 5 MOHeT. PeIIIHTb Ty )l{e 3a,D;a'"lYnpH YCJIOBHH, '"ITO

BHaJIH'"IHHBcero 3 MOHeTbI.

6.8.6.IIOCTPOHTb pfl,Ll; pacnpe,Ll;eJIeHHfI '"IHCJIanOna,Ll;aHHit B BopOTa npH ,LI;ByX O,LI;HHHa,D;u;aTHMeTpOBbIX y,Ll;apax, eCJIH BepOfiTHOCTb nona,D;a- HHfI npH O,Ll;HOM y,Ll;ape paBHa 0,7.

6.8.7.,I1;HcKpeTHM c. B. X 3a,Ll;aHa Pfl,Ll;OM pacnpe,Ll;eJIeHHfI

HaitTH:

a)<PYHKU;HIO pacnpe,Ll;eJIeHHfI F(x);

6) BepOfiTHOCTH C06bITHit A = {X < 2}, B

{I:::;; X < 3},

C = {I < X:::;; 3};

 

B) nOCTpOHTb rpa<PHK <PYHKU;HH F(x).

Q a) IIo onpe,Ll;eJIeHHIO <PYHKU;HH pacnpe,Ll;eJIeHHfI HaXO,Ll;HM:

eCJIH x:::;; -2, TO F(x) = PiX < x} = 0;

eCJIH -2 < x:::;; 1, TO F(x) = PiX < x} = PiX = -2} = 0,08;

341

eCJUI 1 < x :::; 2, TO F(x) = P{X = -2} + P{X = I} = 0,08 + 0,40 = 0,48; eCJUI 2 < x :::; 3, TO F(x) = P{X = -2} + P{X = I} + P{X = 2} =

= 0,08 + 0,40 + 0,32 = 0,80;

eCJUI 3 < X, TO F(x) = P{X = -2} +P{X = I} +P{X = 2} +P{X = 3} =

= 0,08 + 0,40 + 0,32 + 0,2 = 1.

0,

eCJUI x :::; -2,

0,08,

eCJUI

-

2 < x :::; 1,

lITaK, F(x) = 0,48,

eCJIH

1

< x:::; 2,

0,80,

eCJIH 2

< x :::; 3,

1,

eCJIH 3 < x.

6) CHaqaJIa Hail:,!l;eM HCKOMbIe BepOfiTHOCTH HenOCpe,!l;CTBeHHO:

P(A) = P{X < 2} = P{X = -2} + P{X = I} = 0,08 + 0,40 = 0,48;

 

P(B) = P{1 :::;

x < 3} = 0,40 + 0,32 = 0,72;

 

 

P(C) = P{1 < x :::;

3} = 0,32 + 0,2 = 0,52.

 

9TH :>Ke BepOfiTHOCTH MO:>KHO Hail:TH, HCnOJIb3YfI <P0PMYJIbI

 

 

F(x) = P{X < X}

H

P{a:::; X

< b} = F(b) - F(a).

Tor,!l;a

 

 

 

 

 

 

 

 

P(A) = P{X < 2} = F(2) = 0,48;

 

 

 

 

P(B) = P{1 :::; X

< 3} = F(3) -

F(I) = 0,80 - 0,08 = 0,72;

 

P(C) = P{1 < X

:::; 3} = P{1 :::;

X < 3} -

P{X = I} + P{X = 3} =

 

 

= F(3) - F(I) -

0,40 + 0,2 = 0,72 -

0,2 = 0,52.

B) rpa<PHK <PYHKIJ;HH F(x) H306pa:>KeH Ha pHC. 79.

 

 

 

F(x)

 

 

 

 

 

 

 

 

1 ------"1",. _ -

 

 

 

 

 

 

 

,

 

 

 

 

 

 

 

,

 

 

 

 

080,

-----,..:

 

 

 

 

 

 

 

,

 

 

 

 

 

 

 

 

,

 

 

 

 

 

 

 

 

,,

 

 

 

 

 

0,48 -:~!

 

 

 

 

 

 

 

,

,

 

 

 

 

 

 

 

,

,

 

 

 

 

 

 

 

,

,

 

 

 

 

 

0,08

:

!

 

 

 

 

 

 

 

,

,

 

 

 

 

 

 

 

,

 

 

 

 

 

-2 0

1

2

x

 

 

 

 

 

Puc. 79

 

 

6.S.S.

HathH <PYHKIJ;HIO pacnpe,!l;eJIeHHfI CJIyqail:Hoil: BeJIHqHHbI X, 3aKOH

 

pacnpe,!l;eJIeHHfI KOTOPOil: nOJIyqeH npH pemeHHH 3a,n;aqH 6.8.1.

342

a Rait,n.eM F(x), HCnOJIb3Y51 cPOpMyJIy F(x) = 2: Pi ('ITO6b1CTpee npHBO-

 

 

 

 

Xi<X

 

,Il,HT K II.eJIH, qeM HCnOJIb30BaHHe onpe,n:eJIeHH5I F(x)). Tor,n:a

 

0,

 

 

 

x ~ 1,

 

4

 

 

 

1 < x ~ 2,

 

7'

 

 

 

 

 

426

 

2 < x ~ 3,

F(x) = 7

+ 7

= 7'

 

4

2

4

34

3 < x ~ 4,

7

+ 7

+ 35 =

35'

 

4

2

4

1

x> 4.'

 

7

+ 7

+ 35 + 35 = 1,

 

6.8.9.B KOMaH,n:e 16 cnopTCMeHOB, H3 KOTOPbIX 6 nepBOpa3p5l.D:HHKOB. Ra- y,n:aqy Bbl6HpaIOT ,n:ByX cnopTCMeHOB. IIocTpoHTb P5l,n: pacnpe,n:eJIeHH5I H cPYHKII.HIO pacnpe,n:eJIeHH5I qHCJIa nepBOpa3p5l,n:HHKOB cpe,n:H BbI6paHHblx.

6.8.10.3a,n;aHa cPYHKII.H5I pacnpe,n:eJIeHH5I c. B. X. RaitTH P5l,n: pacnpe,n:eJIe-

HH5I, a TaK)l{e Bep05lTHOCTH: PiX = I}, P{1 < X ~ 8}.

O,

npH x ~ 0,

a) F(x) = { 0,3,

npH °< x ~ 1,

1,

npH 1 < x;

0,

x ~ 1,

0,2,

1 < x ~ 3,

6) F(x) = 0,35,

3

< x ~ 6,

0,8,

6

< x ~ 8,

 

8 < x.

6.8.11.

IIoCTpoHTb MHoroyrOJIbHHK pacnpe,n:eJIeHH5I, rpacPHK cPYHKII.HH

pacnpe,n:eJIeHH5I, HanTH Bep05lTHOCTH

P{X> 1,4}, P{1,4 ~ x ~ 2,3}.

6.8.12.IIo,n:6pacblBaIOT ,n:Be MOHeTbI. RanTH cPYHKII.HIO pacnpe,n:eJIeHH5I c. B.

X - qHCJIa BbIIIa,n;eHHn rep6a.

6.8.1S. 3a,n;aHo pacnpe,n:eJIeHHe ,n:. c. B. X

IIoCTpoHTb P5l,n: pacnpe,n:eJIeHH5I CJIyqanHbIX BeJIHqHH:

a)Y=2X;

6)Z=X2.

Q a) B03MO)l{Hble 3HaqeHH5I c. B. Y TaKOBbI:

Yl=2·(-2)=-4,

Y2=2·(-I)=-2, Y3=2, Y4=4, Y5=6.

343

BepmlTHOCTH 3THX 3HaqeHHi\ paBHbI BepOfiTHOCTfiM COOTBeTCTBYIOID;HX 3HaqeHHi\ C. B. X (HanpHMep, P{Y = -4} = P{X = -2} = 0,20 H T.,ll;.). TaKHM o6pa30M

6) 3HaqeHHfI C.B. Z TaKOBbI: ZI = (_2)2 = 4, Z2 = (_1)2 = 1, Z3 = 12 =

= 1, Z4 = 22 = 4, Z5 = 32 = 9. TIPH 3TOM

P{Z = 4} = p{X2 = 4} = P{X = -2} + P{X = 2} = 0,20 + 0,15 = 0,35

H T.,ll;. TI03TOMY PM paCnpe,ll;eJIeHHfI C. B. Z HMeeT BH,ll;

6.8.14. ,1l,aHbI 3aKOHbI pacnpe,ll;eJIeHHfI ,ll;ByX He3aBHCHMbIX CJIyqai\HbIx BeJIHqHH X H Y:

Hai\TH 3aKOH pacnpe,ll;eJIeHHfI CJIyqai\HbIx BeJIHqHH

a) Z=X+Y;

6) W=X·Y.

°=

Q a) Hai\,ll;eM B03MO)KHbIe 3HaqeHHfI

Zij = Xi + Yj: -1 = 1 + (-2),

= 1+(-1),0 = 2+ (-2),1 = 2+ (-1),1 = 3+ (-2),2 = 3+(-1), T.e.

CJIyqai\HM BeJIHqHHa Z npHHHMaeT 3HaqeHHfI ZI = -1, Z2 = 0, Z3 = 1 H

Z4 = 2. HaXO,ll;HM BepOfiTHOCTH 3THX 3HaqeHHi\:

PI = P{Z = -I} = P{X = 1, Y = -2} = P{X = I} . P{Y = -2} =

= 0,3·0,4 = 0,12;

P2 = P{Z = o} = P{X = 1, Y = -I} + P{X = 2, Y = -2} =

= 0,3 . 0,6 + 0,5 . 0,4 = 0,38;

P3 = P{Z = I} = P{X = 2, Y = -I} + P{X = 3, Y = -2} =

= 0,5 . 0,6 + 0,2 . 0,4 = 0,38;

P4 = P{Z = 2} = P{X = 3, Y = -I} = 0,2·0,6 = 0,12.

HanOMHHM, qTO 3anHCb BH,ll;a P{X = 3, Y = -I} 03HaqaeT BepOfiTHOCTb HacTynJIeHHfI ,ll;ByX He3aBHCHMbIX C06bITHi\ {X = 3} H {Y = -I}, T. e.

P{X = 3,Y = -I} = P{{X = 3}· {Y = -I}} = P{X = 3}· P{Y = -I}.

TIPH HaxO)K,ll;eHHH BepofiTHoCTH P3 = P{ Z = I} H P2 MbI BOCnOJIb30BaJIHCb npaBHJIOM CJIO)KeHHfI HeCOBMeCTHbIX C06bITHi\.

B HTore nOJIyqaeM 3aKOH pacnpe,ll;eJIeHHfI c. B. Z = X + Y:

( KOHTPOJIb: t Pi = 1.)

t=1

344

6) AHaJIOrJPIHO

HaxO,Ll;HM

(npoBepbTe!)

p5l,Ll;

pacnpe,Ll;eJIeHH5I

c. B. W =

== Y:

 

 

 

 

 

( KOHTPOJIb: t Pi = 1.)

r--'--~'---~r-~-r--~.-~~

Pi

 

 

 

 

 

 

 

 

 

 

 

 

~=1

 

 

6.8.15.

3a,L1;aHO pacnpe,Ll;eJIeHHe ,LI;HCKpeTHoit c. B. X

 

 

 

 

RaitTH pacnpe,Ll;eJIeHHe C. B.:

 

 

 

 

 

 

a) Y = IXI;

 

 

6) Z = X 3 + 1.

 

 

6.8.16.

,nHcKpeTHM c. B. X HMeeT p5l,Ll; pacnpe,Ll;eJIeHH5I

 

 

 

Xi

0

7r

7r

37r

7r

57r

37r

 

 

 

4

2"

4

4

2"

 

 

 

 

 

 

 

 

 

Pi

1

1

3

1

3

1

1

 

 

 

16

8

16

4

16

8

16

 

 

 

 

 

 

 

llOCTPOHTb:

 

 

 

 

 

 

 

 

 

a) p5l,Ll; pacnpe,Ll;eJIeHH5I c. B. Y = sin ( X - i);

 

 

 

6) rpacPHK cPYHKn:HH pacnpe,Ll;eJIeHH5I c. B. Y.

 

 

6.8.17. llOCTPOHTb p5l,Ll; pacnpe,Ll;eJIeHH5I ,LI;JI5I CJIyqaitHblx BeJIHqHH

 

 

 

Z=X+Y

H W=X·Y,

 

 

 

 

eCJIH X H Y -

He3aBHCHMble CJIyqaitHble

BeJIHqHHbI,

3a,Ll;aHHble

 

p5l,Ll;aMH pacnpe,Ll;eJIeHH5I

 

 

 

 

 

 

 

 

 

 

 

H

 

 

 

 

 

 

RaitTH YCJIOBHYIO Bep05lTHOCTb C06bITH5I {Z < 4} npH YCJIOBHH,

 

'ITO{Z > 2}.

 

 

 

cP0PMYJIOit P {X = k} = C . k,

6.8.18.

Pacnpe,Ll;eJIeHHe,Ll;. c. B. X

3a,L1;aHO

 

r,Ll;e k = 2,3,4,5,6. RaitTH:

 

 

41 < I}.

 

 

 

a) 3HaqeHHe C;

 

 

6) P{IX -

 

 

6.8.19. llo,Ll;6pOIIIeHbI 2 HrpaJIbHble KOCTH. llOCTPOHTb p5l,Ll; pacnpe,Ll;eJIeHH5I:

a)CYMMbI BbIIIaBIIIHX OqKOB; 6) pa3HOCTH BbIIIaBIIIHX OqKOB.

6.8.20.Bep05lTHOCTb TOro, 'ITOCTY,LI;eHT Hait,Ll;eT B 6H6JIHOTeKe HY)l{HYIO eMY KHHry, paBHa 0,4. llOCTPOHTb p5l,Ll; pacnpe,Ll;eJIeHH5I qHCJIa 6~6-

JIHOTeK, KOTopble OH MO)l{eT noceTHTb, eCJIH eMY ,LI;OcTynHbI qeTblpe 6H6JIHOTeKH.

6.8.21.ABTOM06HJIb Ha nYTH K MecTY Ha3HaqeHH5I BCTpeTHT 5 cBeTocPopoB, KaJK,LI;blit H3 KOTOPbIX nponYCTHT ero C Bep05lTHOCTblO ~. llOCTPo-

HTb p5l,Ll; pacnpe,Ll;eJIeHH5I qHCJIa cBeTocPopoB, npoit,Ll;eHHbIX MaIIIHHOit ,LI;O nepBoit OCTaHOBKH HJIH ,LI;O npH6bITH5I K MeCTY Ha3HaqeHH5I.

345

6.8.22.Y .D:e)KypHoro llMeeTCH 7 pa3HbIX KJIlOqei!: OT pa3HbIX KOMHaT. BbI-

HYB HaY.D:aqy KJIlOq, OH npo6yeT OTKpbITb .D:Bepb O.D:HOi!: 113 KOMHaT. IIOCTPOllTb pH.D: pacnpe.D:eJIeHllH qllCJIa nOnbITOK OTKpbITb .D:Bepb (npOBepeHHbli!: KJIlOq BTOPOi!: pa3 He llCnOJIb3yeTCH). IIOCTPOllTb MHoroyrOJIbHllK <noro pacnpe.D:eJIeHllH.

6.8.23.ATe 06CJIY)KllBaeT 1500 a6oHeHToB. BepoHTHoCTb Toro, 'ITOB Te-

qeHlle 3 MllHyT Ha ATe nocTynllT BbI30B, paBHa 0,002. IIOCTPOllTb pH.D: pacnpe.D:eJIeHllH c. B. X, paBHoi!: qllCJIY BbI30BOB, nocTynllBIIIllx Ha ATe B TeqeHlle 3 MllHyT. Hai!:Tll BepOHTHOCTb Toro, 'ITO3a :'lTO BpeMH nocTynllT 60JIee Tpex BbI30BOB.

6.8.24. B napTllll, cO.D:ep)KaIII;ei!: 20 113.D:eJIlli!:, llMeeTCH qeTblpe 113.D:eJIllH C

.D:e<peKTaMll. HaY.D:aqy OTo6paJIll Tpll 113.D:eJIllH .D:JIH npoBepKll llX KaqeCTBa. IIoCTpOllTb pH.D: pacnpe.D:eJIeHllH qllCJIa .D:e<peKTHbIX 113-

.D:eJIlli!:, CO.D:ep)KaIII;IlXCH B YKa3aHHoi!: Bbl6opKe.

6.8.25. I1cnOJIb3YH YCJIOBlle 3a.D:aqll 6.8.4, Hai!:Tll <PYHKIJ;1l1O pacnpe.D:eJIeHllH c. B. II nOCTpOllTb ee rpa<PllK.

6.8.26. I1cnOJIb3YH YCJIOBlle 3a.D:aqll 6.8.6, Hai!:Tll <PYHKIJ;1l1O pacnpe.D:eJIeHllH c. B. II nOCTpOllTb ee rpa<pllK.

6.8.27. I1cnOJIb3YH YCJIOBlle 3a.D:aqll 6.8.22, Hai!:Tll <PYHKIJ;1l1O pacnpe.D:eJIeHllH c. B. II nOCTpOllTb ee rpa<PllK.

6.8.28. IIo.D:6pOIIIeHbI2 llrpaJIbHble KOCTII. IIoCTpOllTb pH.D: pacnpe.D:eJIeHllH II <PYHKIJ;1l1O pacnpe.D:eJIeHllH .D:. c. B. X - qllCJIa Bbllla.D:eHlli!: qeTHOro qllCJIa OqKOB.

6.8.29.X II Y - He3aBllCllMble .D:llCKpeTHble CJIyqai!:Hble BeJIllqllHbI, 3a-

.D:aHHble Ta6JIllIJ;aMll pacnpe.D:eJIeHllH

II

a) pH.D: pacnpe.D:eJIeHllH c. B. Z = X . Y;

6)P{X + Y > 5};

B) P{(X + Y > 5) I (X = 2)}.

6.8.30.3a.D:aHbI pacnpe.D:eJIeHllH .D:ByX He3aBllCllMbIX CJIyqai!:Hblx BeJIllqllH

XllY:

 

II

 

a)

<PYHKIJ;1l1O pacnpe.D:eJIeHllH c. B. X;

X + Y, W =

6)

pH.D: pacnpe.D:eJIeHllH CJIyqai!:Hblx BeJIllqllH Z

=X-Y;

B)P{IX - YI ~ 2};

r)nOCTpOllTb MHoroyrOJIbHllKll pacnpe.D:eJIeHllH c. B. Z II W.

6.8.31. Hai!:Tll <PYHKIJ;1l1O pacnpe.D:eJIeHllH c. B. Y = sin ~X, r.D:e c. B. X -

qllCJIO OqKOB, Bbllla.D:alOIII;ee npll 6pocaHllll llrpaJIbHoi!: KOCTII.

346

6.8.32.I1cnbITaHlul no cxeMe BepHYJIJUI C BepofiTHoCTbIO ycnexa p B O,n;HOM lICnblTaHIUI nOBTopflIOTCfI ,n;o ,n;ByX ycnexoB. IIocTpollTb PfI,n; pacnpe,n;eJIeHlIfi 1.IlICJIa npoBe,n;eHHblx lICnbITaHlIt!:. Hat!:TlI BepofiTHoCTb Toro, 'iTO B nepBbIX N lICnbITaHlIfiX 'illCJIO ycnexoB MeHbille 2.

6.8.33.IIOJIb3YflCb YCJIOBlIeM 3a,n;a'i1l 6.8.29, nocTpollTb PM pacnpe,n;eJIeHlIfi C.B. Z = min{X, Y}.

6.8.34.KaKM 113 HIDKenpllBe,n;eHHbIX nOCJIe,n;OBaTeJIbHOCTet!: f1BJIfleTCfI pacnpe,n;eJIeHlIeM BepOfiTHOCTet!: HeKOTopot!: ,n;lICKpeTHot!: CJIY'iat!:Hoi!: BeJIlI'illHbI?

an = n(n1+ 1);

n

 

 

 

d

2!

dx

nEN.

 

4n - l

-4

 

 

n

 

 

 

 

 

n=:rr

 

 

C = (n _ l)!e

 

;

 

1+x2

'

n-l

6.8.35. .II:lICKpeTHM c. B. X npllHlIMaeT IIeJIO'illCJIeHHble 3Ha'ieHlIfi Xl = 1,

X2 = 2, X3 = 3, .... I13BecTHO, 'iTO Pn = P{X = n} = 2 C

.

n +3n+2

 

Hat!:TlI: •

 

a) 3Ha'ieHlIe napaMeTpa c;

 

6) BepOfiTHOCTb C06bITlIfi D = {X = 5}.

 

6.8.36.MO:>KeT JIll <PYHKIIlIfi F(x) 6bITb <PYHKIIlIet!: pacnpe,n;eJIeHlIfi HeKO-

TOpOt!: c. B., eCJIlI:

 

a) F(x) = e- x ;

6) F(x) = eX;

B) F(x) = 1 - eX;

r) F(x) = 1 - e- x ;

.u.) F(x) = 0,5 + #.arctg(x);

e) F(x) = { 0,4,O'

x:::; 0,

°< x:::; 1,

0,35,

1 < x:::; 5,

1,

5 < x?

6.8.37.MO:>KHO JIll YTBep:>K,n;aTb, 'iTO C06bITlIe C f1BJIfleTCfI HeB03MO:>KHbIM, eCJIlI P(C) = O?

6.8.38.COBna,n;aIOT JIll 3aKOHbI pacnpe,n;eJIeHlIfi ,n;lICKpeTHbIX CJIY'iat!:HbIX BeJIlI'illH X + X II 2 . X?

6.8.39. .II:lICKpeTHM C. B. X npllHlIMaeT HaTypaJIbHble 3Ha'ieHlIfI, npll'ieM

3Ha'ieHlIe n C BepOfiTHOCTbIO 1 IIOCTPOllTb Pfl,n; pacnpe,n;eJIeHlIfi

.

n

2

BepOfiTHocTei!: ,lI;JIfi C. B. Y = 1sin CfX )

§ 9. HEnPEPblBHblE CllYYA~HbIE BElllllYIIIHbl

B rrpe,n;bI,IU'm;eMrraparpa¢e 6bIJIO BBe,n;eHO rrOHXTHe HerrpepblBHo:li CJIY'Ia:liHo:li

BeJIH'IHHbI(H. c. B.). MO:lKHO ,n;aTb ,n;pyroe, 60JIee cTporoe, orrpe,n;eneHHe H. C. B., HC-

nOJIb3yX rrOHXTHe <PYHKIIHH pacrrpe,n;eneHHX.

347

~C.J1Y'IaiiHaJIBeJIH'IHHaX Ha3hIBaerCH Henpep'bl.8HOil, eC.J1H ee <PYHKn;HH pacrrpe-

p;eJIeHHH F(x) HerrpephIBHa Ha Bceii '1HC.J10BOiiOCH.

$

B OT.J1H'IHeOT p;HCKpeTHhIX C.J1Y'IaiiHbIXBe.J1H'IHHBepOHTHOCTb OTp;e.J1bHOrO 3Ha-

'1eHHH ,n;.J1H HerrpepbIBHOii C.J1Y'IaiiHOii Be.J1H'IHHhI paBHa HY.J1IO: P{X = c}

= 0,

'ric E JR. IImlToMY ,n;.J1H H. C. B. X HMeeM:

 

P{a ~ X < b} = P{a < X < b} = P{a < X ~ b} = P{a ~ X ~ b} = F(b) -

F(a).

IIoMHMO <PYHKn;HH pacrrpep;eJIeHHH ,n;.J1H HerrpepbIBHbIX C.J1Y'IaiiHhIXBeJIH'IHH,CYIIIecTByeT eIIIe OP;HH YP;06HbIii crroco6 3ap;aHHH 3aKOHa pacrrpep;eJIeHHH - rr.J10THOCTb BepOHTHOCTH.

~IIycTb <PYHKn;HH pacrrpep;eJIeHHH F(x) p;aHHoii H. C. B. X HerrpepbIBHa H P;H<p<pe-

peHn;HpyeMa BCIO,D;y, KpOMe, MO:lKeT 6bITb, OTP;eJIbHbIX TO'leK. Torp;a rrpOH3Bop;HaH I (x) ee <PYHKn;HH pacrrpep;eJIeHHH Ha3hIBaeTCH n.n.omHOCm'b'lO pacnpeiJe.n.ewuSI Herrpe-

PhIBHOii c. B. X (H.J1H «rr.J10THOCTbIO BepOHTHOCTH», H.J1H rrpOCTO «rr.J10THOCTbIO»):

I(x) = F'(x).

HapH,D;y C 0603Ha'leHHeM I(x) ,n;.J1H rr.J10THOCTH pacrrpep;eJIeHHH HCrr0.J1b3yeTcH TaK:lKe 0603Ha'leHHep(x) (T.e. p(x) = F'(x)).

CBOMCTBa nnOTHOCTIo1 pacnp~eneHIo1H:

1.I (x) ~ 0 (cBoiicTBO HeOTpHn;aTeJIbHOCTH);

2.j00I (x) dx = 1 (cBoiicTBO HOpMHpoBaHHocTH);

 

- 00

 

 

 

b

3.P{a~X~b}= jl(X)dX;

 

 

a

4.

 

'"

F(x) = j I(t) dt;

 

 

- 00

5.

lim

I(x) = O.

 

"'..... ±oo

 

~ rpa<pHK

rr.J10THOCTH pacrrpep;e.J1eHHH I (x) Ha3hIBaeTCH IGpu80il pacnpeiJe.n.e-

H~.

 

$

6.9.1.3a.rr,aHa <PYHKIl;fUI paclIpe,n:e.neHlul H. C. B. X

O'

IIpH X < 3,

F(x) = { C(x - 3)2,

IIpH 3 ~ x ~ 5,

1,

IIpH 5 < x.

RaitTH:

 

a) K09<P<PHIJ;HeHT C;

 

348

6) IIJIOTHOCTb pacIIpe,n:eJIeHHH f(x) c. B. X H IIOCTPOHTb rpa<PHKH q,YHKIJ.Ht!: F(x) H f(x);

B) PiX E [3,4)}.

o a) TaK KaK c. B. X - HeIIpepbIBHa, TO F(x) ,n:OJDKHa 6bITb HeIIpepbIBHot!: q,YHKIJ.Het!: B JIlo6ot!: TO'"lKe,B '"IaCTHOCTH,H IIpH X = 5. TaK KaK F(5) = 1, TO

C· (5 -

3)2 = 1, oTKy,n:a C = ~. TaKHM o6pa30M,

 

 

 

 

 

O'

 

IIpH x < 3,

 

 

 

 

F(x) = { ~(x - 3)2,

IIpH 3:::; x:::; 5,

 

 

 

 

 

1,

 

IIpH 5 < x.

 

 

6) llJIOTHOCTb paCIIpe,n:eJIeHHH f(x)

= F'(x) BblpaJKaeTCH <POPMYJIOt!::

 

 

 

O'

 

IIpH X < 3,

 

 

 

 

f(x) = { ~(x - 3),

IIpH 3 :::; x :::; 5,

 

 

 

 

 

0,

 

IIpH 5 < X.

 

 

fPa<PHKH q,YHKIJ.Ht!: F(x) H

f(x)

IIpe,n:cTaBJIeHbI Ha pHC. 80 H pHC. 81.

 

F(x)

 

 

 

I(x)

 

 

 

 

1

 

 

 

 

 

 

 

 

o

3

5

x

o

3

5

x

 

 

Puc. 80

 

 

 

Puc. 81

 

 

 

 

 

 

 

 

b

 

 

B) lICIIOJIb3YH q,OPMYJIY P{a:::; X

:::; b} =

Jf(x) dx., HaxO,n:HM, '"ITO

 

 

 

 

 

 

a

 

 

 

 

 

 

 

 

4

 

 

 

 

PiX E [3,4)]} = P{3:::; X < 4} = J~(x - 3)dx =~.

 

 

 

 

 

 

 

3

 

ilJIH, HHa'"leP{3 :::; X < 4} = F(4) - F(3) =

~ - °= ~.

 

6.9.2.

llPH KaKHX 3Ha'"leHHHIIapaMeTpOB k H b <PYHKIJ.HH

 

 

 

 

 

 

O'

x:::;

-1,

 

 

 

 

F(x) = { kx + b,

-1 < x :::; 2,

 

 

1, 2<x

MO)KeT 6bITb <PYHKIJ.Het!: paCIIpe,n:eJIeHHH HeKoTopot!: HeIIpepbIBHot!: c. B. X? Hat!:TH BepoHTHoCTb Toro, '"ITOC. B. X IIpHMeT 3Ha'"leHHe, 3aKJIIO'"IeHHOeB IIpOMe)KYTKe (-2,3; 1,5). llOCTPOHTb rpa<PHK IIJIOTHOCTH pacIIpe,n:eJIeHHH 9TOt!: CJIY'"Iat!:Hot!:BeJIH'"IHHbI.

349

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]