
Сборник задач по высшей математике 2 том
.pdf6.2.36. ,I1;oKa3aTb, qTO:
a) AB + B = B - A;
6)B = A, eCJUI A· B = 0 H A· B = 0.
6.2.37.8JIeKTpHqeCKaH IJ;errb C BbIKJIlOqaTeJIHMH COCTaBJIeHa rro cxeMe, rrpHBe,n:eHHofi Ha pHCYHKe 62. IIycTb Co6bITHe Ai = {BKJIlOqeH BbIKJIIOqaTeJIb C HOMepoM i }, i = 1,2, ... ,5.
a),I1;JIH cxeMbI pHC. 62 a 3arrHcaTb qepe3 Ai Co6bITHe A = {TOK H,n:eT};
6)MH cxeMbI pHC. 626 3arrHcaTb qepe3 Ai C06bITHH AHA.
a |
6 |
Puc. 62
6.2.38. IIycTb A, B, C - CJIyqafiHble C06bITHH, rrpHqeM A H B HeCOBMeCT-
HbI. IIoKa3aTb, qTO C06bITHH AC H BC TaK)Ke HeCOBMeCTHbI.
KOHTponbHble BonpOCbl III 60nee CnO>KHble 3aAa'"llil
6.2.39.1:13 KOJIO,n:bI HrpaJIbHbIX KapT (Bcero HX 36) H3BJIeKalOT O,n:Hy. Co-
CTaBHTb He MeHee ,n:ByX rrpOCTpaHCTB 9JIeMeHTapHbIX C06bITHfi MH ,n:aHHoro orrbITa.
6.2.40. CKOJIbKO C06bITHfi MO)KHO COCTaBHTb MH rrpOCTpaHCTBa
6.2.41. IIo,n:6pacbIBalOTcH 3 MOHeTbI. CKOJIbKO HMeeTCH paBHOB03MO)KHbIX HCXO,n:OB ,n:aHHoro orrbITa? CocTaBHTb C06bITHH, 06pa3ylOIu;He rrOJIHylO rpyrrrry. IIpHBecTH rrpHMepbI C06bITHfi, He o6pa3yIOIu;Hx rrOJIHyIO rpyrrrry. YKa3aTb rro,n:MHO)KeCTBa MHO)KeCTBa fl, COOTBeTCTBYIOIu;He C06bITHHM: A - BbIIIaJIO He 60JIee o,n:Hofi peIIIKH; B - BbI-
rraJIO POBHO ,n:Ba rep6a.
6.2.42. M3BecTHo, qTO C06bITHH Al H A2 rrpOH30IIIJIH, a Co6bITHe A3 He
rrpOH30IIIJIO. IIPOH30IIIJIH JIH C06bITHH:
a) Al . A2 + A 3; |
6) Al + A 2A 3 ; |
B)AI ·A2 ·A3 ? |
|
6.2.43. KaKoB CMbICJI paBeHcTB: |
6) A + B + C = A? |
a) A . B . C = A; |
290
6.2.44. 8JIeKTpllqeCKaH u;enb COCTaBJIeHa no cxeMe, npllBe,neHHoil: Ha p"C. 63. lIycTb C06bITllH Ai, i = 1,2,3,4,5, COCTOHT B TOM, qTO o,nHOllMeHHble 9JIeMeHTbI pa6oTaroT 6e30TKa3HO B TeqeHlle BpeMeHll T. C06bITlle B = {cxeMa pa60TaeT 6e30TKa3HO B TeqeHlle Bpe-
Bblpa311Tb C06bITllH B II Ii qepe3 C06bITllH Ai'
|
Puc. 63 |
|
Puc. 64 |
6.2.45. 8JIeKTpllqeCKaH u;enb |
COCTaBJIeHa no cxeMe, npllBe,neHHoil: Ha |
||
|
p"C. 64. C06bITlle Ai - |
9JIeMeHT no,n HOMepoM i BbIXO,nllT 113 CTPOH, |
|
|
i = 1,2,3,4,5. C06bITlle B - |
pa3pbIB u;enll. Bblpa311Tb C06bITlle B |
|
|
qepe3 C06bITllH Ai' |
|
|
6.2.46. |
,Il;oKa3aTb, qTO A· B + C = |
(A + C) . (B+ C), r,ne A,B,C - |
|
|
CJIyqail:Hble C06bITllH. |
|
|
6.2.47. |
Hail:Tll CJIyqail:Hoe C06bITlle X 113 paBeHCTBa: |
a)A·X=A+X;
6.2.48. CnpaBe,nJIllBbI JIll CJIe,nyroIIJ;lle paBeHCTBa:
a) A + A = A; 6) A . A = A;
B) A+B = A·B?
6.2.49.lIPII KaKOM YCJIOBllli cnpaBe,nJIllBO paBeHCTBO (A + B) - B = A?
6.2.50.,Il;oKa3aTb, qTO (A + B) - B = A-B.
6.2.51.lIoKa3aTb, qTO eCJIll B ~ A, TO (A - B) + B = A.
6.2.52. ,Il;oKa3aTb, qTO A - B = 0 ¢:} A ~ B.
§ 3. BEPOHTHOCTb CJ1YYAVlHOrO C06blTlJIH
KnaCCM'·leCKoeonpE!AeneHMe BepOSITHOCTM
Bep0Jl.mxocm'b C06bITHH 'lHCJIeHHOXapaKTepH3yeT CTeneHb B03MO)KHOCTH ero nOHBJIeHHH B paccMaTpHBaeMOM onbITe.
~ IIycTb npOH3Bo.n;HTCH onbIT C n paBHOB03MO)KHbIMH Hcxo.n;aMH, o6pa3yIOIllHMH nOJIHyIO rpynny HeCOBMeCTHbIX C06bITHiI:. TaKHe HCXO.n;bI Ha3bIBaIOTCH 3.1/,e.MeXmap- H.'b/,.MU ucxoiJa.MU (co6'b/,mUJI..Mu), C.l/,y"taJI..MU, waxca.Mu. CJIY'lail:,KOTOPbIiI: npHBo.n;HT
l( HacTynJIeHHIO C06bITHH A, Ha3bIBaeTCH 6.1/,azonpUJI.mx'b!.M (HJIH 6.1/,azonpUJI.mcm6YIOU{U.M) eMy. ~
291
~BepoSlm'Hocm'b'lO co6'b/,mUSl A Ha3bIBaeTCH OTHOIIIeHHe '1HCJIam CJIY'IaeB,6JIaro-
npHHTcTByIOIIIHX 3TOMY c06b1THIO, K o6IIIeMY '1HCJIYn CJIY'IaeB.
peA) = r;:.
TaKoe onpe.n;eneHHe BepoHTHoCTH Ha3bIBaeTCH lC.I!acCU"tecICUM.
1'13 KJIaCCH'IeCKoroonpe.n;eneHHH CJIe.n;yIOT CBoil:cTBa BepOHTHOCTH: 0 ~ peA) ~
~ 1; P(0) = 0; P(Q) = 1; peA) = 1 - peA); peA + B) = peA) + PCB), eCJIH A·B=0.
reOMeTplII'"IeCKOeonpE!AeneHllle BepORTHOCTIII
0606IIIeHHeM nOHHTHH «KJIaccH'IeCKoil:BepOHTHOCTH» Ha CJIY'Iail:onblTOB C 6ecKOHe'lHblM(Boo6IIIe rOBopH, HeC'IeTHblM)'1HCJIOMHCXO.n;OB HBJIHeTCH nOHHTHe «reoMeTpH'IeCKoil:BepOHTHOCTH». K 3TOMY nOHHTHIO npHBo.n;HT 3a.n;a'lHHa no.n;C'IeTBePOHTHOCTH nona.n;aHHH TO'lKHB HeKYIO 06JIaCTb (OTpe30K, '1aCTbnJIOCKOCTH, '1acTb Tena H T. .n;.).
IIycTb npOCTpaHCTBO 3JIeMeHTapHblX C06b1THiI: Q npe.n;CTaBJIHeT co6oil: HeKOTOpyIO 06JIaCTb ITJIOCKOCTH. Tor.n;a B Ka'leCTBeC06b1THiI: MorYT paCCMaTpHBaTbCH 06JIacTH A, co.n;ep:lKaIIIHeCH B Q.
~ BepoHTHoCTb nona.n;aHHH B 06JIacTb A TO'IKH, Hay.n;a'lYBbl6paHHoil: H3 o6JIaCTH Q, Ha3b1BaeTCH eeoMempu"teclCoi1. 6epOSlm'HOCm'b'lO C06b1THH A H HaxO.n;HTCH no
<popMYJIe
SeA) peA) = S(Q)'
r.n;e SeA) H S(Q) nJIOIIIa.n;H 06JIacTeil: A H Q COOTBeTCTBeHHO.
CJIY'lail:,Kor.n;a Q npe.n;CTaBJIHeT co6oil: OTpe30K HJIH TpeXMepHYIO 06JIacTb, pac-
CMaTpHBaeTCH aHaJIOrH'IHO.
AKCIIIOMaTIII'"IeCKOeonpE!AeneHllle BepORTHOCTIII
IIycTb Q - MHO:lKeCTBO Bcex B03MO:lKHblX HCXO.n;OB HeKOToporo onbITa (3KcnepHMeHTa). COrJIacHo aICCUOMamU"teCICOMY onpeiJe.l!eHU'IO 6epOSlm'HOCmU, Ka:lK.n;OMY CO6b1THIO A (A - no.n;MHO:lKeCTBO MHO:lKeCTBa Q) CTaBHTCH B COOTBeTCTBHH HeKOTOpoe '1HCJIO peA), Ha3b1BaeMOe BepOHTHOCTbIO C06b1THH A, npH'IeMTaK, 'ITOBblnOJIHH-
IOTCH CJIe.n;yIOIIIHe TpH YCJIOBHH (aKCHOMbI BepOHTHocTeil:):
peA) ;;:: 0; |
(3.1) |
P(Q) = 1; |
(3.2) |
aKCHOMa CJIO:lKeHHH: P (~Ak) = ~peAk), |
(3.3) |
eCJIH Ai .Aj = 0 (i =f. j), T. e. BepOHTHOCTb CYMMbI nonapHO-HeCOBMeCTHblX Co6b1THiI: paBHa CYMMe BepOHTHocTeil: 3THX C06b1THiI:.
292
lh aKCHOM (3.1)-(3.3) BhITeKalOT OCHOBHhIe cBoiicTBa BepOHTHOCTH:
1.P(0) = 0, T. e. BepOHTHOCTb HeB03MO)KHOrO C06hITHH paBHa HYJIIO.
2.P(A) + P(A) = 1.
3.0 ~ P(A) ~ 1 .LI.J1H JII060ro C06hITHH A.
4.P(A) ~ P(B), eCJIH A ~ B.
n |
n |
|
5. L: |
P(Ai) = 1, eCJIH L: Ai = n H Ai . Aj = 0, i =1= j. |
|
i=1 |
i=1 |
|
ECJIH MHO)KeCTBO n COCTOHT H3 n PaBHOB03MO)KHbIX 9JIeMeHTapHbix C06hITHiI:, |
||
|
1 |
A onpe,n;eJIH- |
(T.e. P(wr) = P(W2) = ... = P(wn ) = n)' TO BepOHTHOCTb C06blTHH |
||
eTCH no <popMYJIe KJIaccH'IeCKoroonpe,n;eJIeHHH BepoHTHoCTH |
|
|
|
P(A) = ~, |
|
r,n;e m - |
'IHCJIOCJIY'IaeB(9JIeMeHTOB) Wi, npHHa,lJ.JIe)KaUJ;HX MHO)KeCTBY A ('IHCJIO |
6JIarOnpHHTcTBYIOlllHX C06blTHIO A HCXO,n;OB), n - 'IHCJIO9JIeMeHTOB MHO)KeCTBa n
(,{HCJIO Bcex HCXO,n;OB onbITa).
6.3.1.B ypHe CO,Il;ep:>K11TCH 5 6eJIbIX 11 4 qepHbIX IIIapa, pa3JI11qaI01lI11XCII TOJIbKO IIBeTOM.
1)BbIH11MaeTCH HaY,Il;aqy O,Il;11H IIIap. Hail:T11 BepoHTHoCTb Toro, 'ITO OH 6eJIblil:.
2)BbIH11MaIOTCH HaY,Il;aqy ,Il;Ba IIIapa. Hail:T11 BepoHTHoCTb Toro, 'ITO:a) o6a IIIapa 6eJIble; 6) XOTH 6bI O,Il;11H 113 H11X qepHblil:.
Q 1) IIepeHYMepyeM IIIapbI. IIpocTpaHcTBo 9JIeMeHTapHblx C06bIT11il: MO:>KHO 3almcaTb B B11,Il;e n = {Bl, B 2 , B 3 , B 4 , B 5 , ql, q2, q3, q4,}'IIycTb C06bIT11e
A = {noHBJIeH11e 6eJIoro IIIapa}, TOr,Il;a A = {BI' 2 , B 3 , B 4 , B5}.
TaK KaK Bce 9JIeMeHTapHble 11CXO,Il;bI paBHOB03MO:>KHbI, TO no KJIacC11qeCKOMY onpe,Il;eJIeH111O BepOHTHOCT11 P(A) = r:: = ~.
2) IIp11 BbIH11MaH1111 ,Il;ByX IIIapoB B03MO:>KHbI TaK11e 11CXO,Il;bI: (BI'qr), (B2'B 3), (B3, B 2), (q4, B 5 ) 11 T.,Il;. Q11CJIO Bcex CJIyqaeB paBHo n = A~ =
==9·8 = 72.
a)HCXO,Il;aM11, 6JIarOnp11HTcTBYI01lI11M11 HacTynJIeH1110 C06bIT11H B = {noHBJIeH11e ,Il;ByX 6eJIbIX IIIapoB}, HBJIHIOTCH (BI' 2), (BI' 3), (B3, B 5 ), (B3, B I )
Ii T.,Il;. Q11CJIO TaK11X CJIyqaeB paBHO m = Ag = 5 ·4 = 20. IIo9ToMY P(B) =
== r:: ~~ 5
'= 18 .
6) HCXO,Il;aM11, 6JIarOnp11HTcTBYI01lI11M11 HacTynJIeH1110 C06bIT11H C = {noHBJIeH11e XOTH 6bI O,Il;HOro qepHOrO IIIapa} , HBJIHIOTCH (BI'Qr), (BI'Q2),
(EI'Q3), |
(Q3,Br), |
(Ql, Q2), (Q3, Q4) 11 T.,Il;. Q11CJIO TaK11X CJIyqaeB paBHO |
m = A~ - |
Ag = 72 - |
20 = 52 (B 20 CJIyqMX 11372 nOHBHTCH ,Il;Ba 6eJIbIX IIIapa |
(CM. nyHKT a), n09ToMY B OCTa.JIbHbIX CJIyqMX XOTH 6bI O,Il;11H 113 napbI IIIapOB
6Y,Il;eT qepHbIM. OTCIO,Il;a P(C) = ~~ |
= ~~. 9TOT:>Ke pe3YJIbTaT MO:>KHO nOJIy- |
|||||
- |
|
- |
= 1 - |
5 |
13 |
• |
l.J.IiTb 11Haqe, T. K. C = B, TO P(C) |
= P(B) = 1 - P(B) |
18 |
= 18.' |
|
293
6.3.2. |
B Kop06Ke 5 CHHHX, 4 KpacHbIX H 3 3eJIeHbIX KapaH,Il;arna. HaY,Il;aqy |
|
|
BbIHHMaroT 3 KapaH,Il;arna. KaKOBa BepOHTHOCTb Toro, qTO: |
|
|
a) Bce OHH O,Il;HOrO IJ;BeTa; |
6) Bce OHH pa3HbIX IJ;BeTOB; |
B) Cpe,Il;H HHX 2 CHHHX H 1 3eJIeHblii KapaH,Il;arn.
a CHaqaJIa 3aMeTHM, qTO qHCJIO cnoc060B BbI6paTb 3 KapaH,Il;arna H3 12
HMeroIu;HxcH B HaJIHqHH paBHO n = Cr2 = 220.
a) BbI6paTb 3 CHHHX KapaH,Il;arna H3 5 MO:lKHO Cl cnoc06aMH; 3 KpaCHbIX H3 HMeroIu;HxcH 4 MO:lKHO BbI6paTb Cr cnoc06aMH; 3 3eJIeHbIX H3 3 3eJIeHbIX -
C: cnoc06aMH.
ITo npaBHJIy CJIO:lKeHHH 06Iu;ee qHCJIO m CJIyqaeB, 6JIarOnpHHTcTByroIu;Hx C06bITHro A = {TpH KapaH,Il;arna, BbIHYTbIX H3 Kop06KH, O,Il;HOrO IJ;BeTa}, paBHO
m = Cl + Cr + C: = 15. |
1 |
||
OTcro,Il;a P(A) = ~ = 2;0 = 14. |
|||
6) ITYCTb C06bITHe B = {TpH BbIHYTbIX KapaH,Il;arna pa3HbIX IJ;BeToB}. l..{H- |
|||
CJIO m |
HCXO,Il;OB, 6JIarOnpHHTcTByroIu;Hx HacTynJIeHHro C06bITHH B, no npaBH- |
||
JIy YMHO:lKeHHH paBHO m |
= CJ . Cl . C~ = 5 . 4 . 3 = 60. IT03TOMY P(A) = |
||
m |
60 |
3 |
|
n |
220 |
IT· |
|
B) ITYCTb C06bITHe C = {H3 Tpex BbI6paHHbIX KapaH,Il;arneii 2 CHHHX H 1
3eJIeHblii}. BbI6paTb 2 CHHHX KapaH,Il;arna H3 HMeroIu;HxcH 5 CHHHX MO:lKHO C~ cnoc06aMH, a 1 3eJIeHblii H3 HMeroIu;HxcH 3 3eJIeHbIX - C~ cnoc06aMH. OTcro,Il;a no npaBHJIy YMHO:lKeHHH HMeeM: m = C~ . C~ = 30. IT03TOMY P(C) = ~ =
0 |
3 |
• |
= ;20 |
= 22. |
|
6.3.3. |
)l;aHO rneCTb KapTOqeK C 6YKBaMH H, M, 1I, 51, JI, O. HaiiTH Bepo- |
|
|
HTHOCTb Toro, qTO: |
|
|
a) nOJIyqHTCH CJIOBO JIOM, eCJIH Hayra,IJ; O,Il;Ha 3a ,Il;pyroii BbI6Hpa- |
|
|
roTCH TpH KapTOqKH; |
|
|
6) nOJIyqHTCH CJIOBO MOJIH1I5l, eCJIH Hayra,Il; O,Il;Ha 3a ,Il;pyroii BbI- |
|
|
6HparoTcH rneCTb KapTOqeK H pacnOJIararoTcH B pH,Il; B nOpH,Il;Ke |
|
a a) |
nOHBJIeHHH. |
|
1I3 rneCTH ,Il;aHHbIX 6YKB MO:lKHO COCTaBHTb n = A~ = |
120 Tpex6y- |
KBeHHblX «CJIOB» (HlIJI, OJI5I, OHlI, JI5IM, MlIJI H T. ,Il;.). CJIOBO JIOM npH 3TOM nOHBHTCH JIHrnb O,Il;HH pa3, T. e. m = 1. IT03TOMY BepOHTHOCTb nOHBJIeHHH CJIOBa JIOM (c06bITHe A) paBHa P(A) = ~ = 1~0.
6) IIIecTH6YKBeHHble «CJIOBa» OTJIHqaroTcH ,Il;pyr OT ,Il;pyra JIHrnb nOpH,Il;- KOM pacnOJIO:lKeHHH 6YKB (HOJIM1I5l, 51HOJIlIM, OJIH1I5lM H T.,Il;.). lIx
qHCJIO paBHO qHCJIY nepeCTaHOBOK H3 6 6YKB, T. e. n = P6 |
= 6!. OqeBH,Il;HO, |
qTO m = 1. Tor,Il;a BepOHTHOCTb nOHBJIeHHH CJIOBa MOJIHlI51 (C06bITHe B) |
|
paBHa P(B) = ~ = i! = 7~0· |
• |
6.3.4. BporneHbI 2 HrpaJIbHble KOCTH. HaiiTH BepoHTHoCTb Toro, qTO: a) cyMMa BbmaBrnHX OqKOB He npeBOCXO,Il;HT 7;
6) Ha 06eHX KOCTHX Bbma,Il;eT O,Il;HHaKOBoe qHCJ10 OqKOB;
294
B)IIpOH3Be,n;eHHe BbIIIaBIIIHX O'IKOB,n;eJIHTCH Ha 4;
r)XOTH 6bI Ha O,n;HOil: KOCTH BbIIIa,n;eT 6 O'IKOB.
6.3.5.Ko,n; ,n;oMo<poHa COCTOHT H3 8 IJ;H<PP, KOTopble MoryT IIOBTOpHTbCH. KaKoBa BepOHTHOCTb TOro, 'ITO,CJIY'Iail:HoHa6HpM IJ;H<pPbI, MO:>KHO yra,n;aTb Hy:>KHblil: KO,n;?
6.3.6.1h 6YKB A, C, H, H, A, A pa3pe3Hoil: a36YKH COCTaBJIHeTCH Hay- ,n;a'IyCJIOBO, COCTOHmee H3 6 6YKB. KaKOBa BepOHTHOCTb TOro, 'ITO IIO.nY'IHTCHCJIOBO «AHAHAC»?
6.3.7.BOCeMb ,n;pY3eil: paCIIpe,n;eJIHIOT MeCTa 3a KpyrJIbIM CTOJIOM IIO :>Kpe6HIO. KakOBa BepOHTHOCTb TOrO, 'ITO,n;Ba H3 HHX, a HMeHHO A H B,
6y.n;yT CH,n;eTb PH,n;OM?
6.3.8.)l;Boe ,n;py3eil:, A H B, CTOHT B O'Iepe,n;HH3 8 'IeJIOBeK.Hail:TH BepoHTHOCTb Toro, 'ITO:
a) A H B CTOHT pH,n;OM;
6) Me:>K.n;y A H B CTOHT ,n;Ba 'IeJIOBeKa.
6.3.9. Ha 5 KapTO'IKaxHaIIHcaHO IIO O,n;HOil: IJ;H<ppe H3 Ha60pa 1, 2, 3, 4, 5. Hayra,n; BbI6HpalOTcH ,n;Be KapTO'IKH.KaKoBa BepOHTHOCTb TOro, 'ITO'IHCJIOHa BTOPOil: KapTO'IKe60JIbIIIe, 'IeMHa IIepBoil:?
6.3.10.1h KOJIO,n;bI B 36 KapT H3BJIeKalOTCH Hay,n;a'Iy4 KapTbI. KaKoBa
BepOHTHOCTb C06bITHil:: A = {Bce H3BJIe'IeHHble KapTbI IIHKOBOil: MacTH}, B = {cpe,n;H 3THX 'IeTblpexKapT OKa:>KeTCH XOTH 6bI O,n;HH
KOpOJIb}?
6.3.11.Ih 40 BOIIPOCOB, BXO,n;HmHX B 3K3aMeHaIJ;HOHHble 6HJIeTbI, cTy,n;eHT
3HaeT 30. Hail:TH BepOHTHOCTb TOro, 'ITOcpe,n;H Tpex Hayra,n; BbI-
6paHHbIX BOIIPOCOB cTy,n;eHT 3HaeT:
a) 3 BOIIpoca; 6) 2 BOIIpoca;
B)1 BOIIpOC.
6.3.12.TPH 'IeJIOBeKaIIPOH3BOJIbHO pa3MemaroTcH B 8 BarOHax 3JIeKTpH'I- KH. KaKoBa BepOHTHOCTb Toro, 'ITOBce OHH:
a) 3ail:.n;yT B O,n;HH BarOH; |
6) 3ail:.n;yT B BarOH N~ 3; |
B)pa3MeCTHTCH B pa3HbIX BaroHax?
6.3.13.12 'IeJIOBeK,cpe,n;H KOTOPbIX lleTpoB H llBaHoB, pa3MemalOTCH B ro-
CTHHHIJ;e, B KOTOPOil: eCTb O,n;HH 4-MecTHblil:, ,n;Ba 3-MecTHblx H O,n;HH 2-MecTHblil: HOMep. KaKoBa BepoHTHoCTb C06bITHH A, COCTOHmero
B TOM, 'ITOlleTpOB H llBaHoB IIOIIa,IJ;yT B 2-MecTHblil: HOMep?
6.3.14.Ha oTpe30K AB MHHbI a Hay,n;a'IyHaHeceHa TO'IKaC. Hail:TH Bepo-
HTHOCTb Toro, 'ITOMeHbiliHil: H3 OTpe3KOB AC Ii C B HMeeT ,n;JIHHy, 60JIbillYIO, 'IeM~.
Q PaCIIOJIO:>KHM OTpe30K AB Ha 'IHCJIOBOil:OCH OX TaK, KaK 3TO H306pa:>KeHO Ha pHCYHKe 65.
llYCTb x - Koop,n;HHaTa CJIY'Iail:Hoil: TO'IKH C. Tor,n;a IIpOCTpaHCTBO n
3JIeMeHTapHblx C06bITHil: MO:>KHO 3aIIHcaTb B BH,n;e n = {x: 0::;; x ::;; a} . .HcHO, 'ITOHCXO,n;OB OIIbITa (HaHeCeHHe TO'IKHC Ha OTpe30K AB) 6eC'IHCJIeHHOe MHO:>KeCTBO H Bce OHH paBHOB03MO:>KHbI.
295

A |
MeN B |
• |
ISS%£SSSS.,SSSgSSSS1 I |
o |
x |
Puc. 65
Pa306beM OTpe30K AB Ha 6 paBHbIX OTpe3KOB. OqeBH,n;Ho, qTO YCJIOBHe «MeHbIIIHii H3 OTpe3KOB AC H CB HMeeT ,1J.JIHHy, 60JIbIIIYIO, qeM ~» (C06bITHe
A) 6y,n;eT BbIIIOJIHeHO, eCJIH TOqKa Cnona,n;eT Ha OTpe30K M N 5:] .
TaKHM 06pa30M, 06JIaCTbIO, 6JIaronpHHTcTBYIOrn;eii HacTynJIeHHIO C06bITHH A
(Ha pHCYHKe 65 OHa 3aIIITpHXOBaHa), HBJIHeTCH OTpe30K MN, a MHOlKeCTBY Bcex HCXO,n;OB onbITa COOTBeTcTByeT OTpe30K AB. OTCIO,n;a
|
|
4Q |
|
• |
P(A) = |
MN |
6 |
2 |
|
AB |
= Q |
= 3· |
|
6.3.15. IIpoTHBHHK B TeqeHHe qaca ,n;eJIaeT O,n;HH ,n;ecHTHMHHYTHbIii HaneT
Ha yqaCTOK IIIocce. B TeqeHHe 3Toro )l(e qaca HY)l(HO npeo,n;OJIeTb 3TOT onaCHbIii yqaCTOK IIIocce. C KaKoii BepoHTHoCTbIO MO)l(HO H36e)l(aTb HaneTa, eCJIH BpeMH npeo,n;OJIeHHH onacHoro yqacTKa nHTb MHHYT?
a 0603HaqHM qepe3 x MOMeHT BpeMeHH, Kor,n;a HaqHHaeTCH BbIXO,n; Ha onacHbIii yqacTOK IIIocce, a qepe3 Y - MOMeHT BpeMeHH Haqana 06CTpeJIa 3Toro yqacTKa IIIocce. .HCHO, qTO 0 ~ X ~ 60, 0 ~ Y ~ 60.
By,n;eM paCCMaTpHBaTb x H Y KaK ,n;eKapTOBbI Koop,n;HHaTbI Ha nJIOCKOCTH.
Tor,n;a 3JIeMeHTapHbIe HCXO,n;bI B ,n;aHHOM OnbITe (OH COCTOHT B <pHKcaU;HH BpeMeHH Haqana ,n;eiicTBHii 06eHx CTOpOH), H306pa3HTcH TOqKaMH (x, y) KBa,n;paTa co CTOPOHOii T = 60, T.e. 0 = {(x,y): 0 ~ x ~ 60, 0 ~ y ~ 60}.
IIHTepecyIOrn;ee Hac C06bITHe A = {y,n;acTCH H36e)l(aTb HaneTa} HacTynHT Tor,n;a H TOJIbKO Tor,n;a, Kor,n;a HaneT HaqHeTCH cnycTH nHTb (HJIH 60JIbIIIe) MHHyT nOCJIe BbIxo,n;a Ha onacHbIii yqaCTOK JIH60 HaqHeTCH 3a ,n;ecHTb (H 60JIee) MHHyT ,n;o Haqana npeo,n;OJIeHHH yqaCTKa IIIocce, T. e. ,n;OJI)I(HO BbIIIOJIHHTbCH
O,n;HO H3 YCJIOBHii
[ y - x> 5, x - y > 10.
8TH HepaBeHCTBa onpe,n;eJIHIOT 6JIarOnpHHTCTBYIOrn;yIO C06bITHIO A 06JIacTb
D, 3aIIITpHXOBaHHYIO Ha pHCYHKe 66.
IIJIorn;a,n;b 06JIaCTH D paSHa 8(D) = ~ ·50·50 + ~ ·55·55 = 2762,5; nJIOrn;a,n;b KBa,n;paTa 0 paBHa 8(0) = 60·60 = 3600.
Tor,n;a HCKOMM BepOHTHOCTb paBHa |
|
|
|
P(A) = 8(D) = 2762,5 = 221 '""-J 0 77 |
• |
||
8(0) |
3600 |
288 '" , . |
296

q |
|
1 |
|
1 2 |
D |
4 |
|
o |
|
Puc. 66 |
Puc. 67 |
6.3.16. KaKoBa BepOjiTHOCTb TOro, qTO KOpHH ypaBHeHHjI x 2 +px + q = °
6Y.IU'T,1l.eitcTBHTeJIbHbIMH, eCJIH K09<P<PHIIHeHTbI p H q ypaBHeHHjI BbI6HpalOTCjI HaY,1l.aqy H3 oTpe3Ka [0,1]7
Q BY,1l.eM paCCMaTpHBaTb MHO>KeCTBO Bcex B03MO:>KHbIX rrap qHCeJI (p, q) KaK
KOOp,1l.HHaTbI TOqeK e,1l.HHHqHOrO KBa,rr,paTa C BepIIIHHaMH (0,0), (0,1), (1,1), |
||
(1,0) (CM: pHC. 67). IIo9ToMY n = {(p, q): |
0::;; p ::;; 1, °::;; q ::;; |
I}. |
KOPHH ypaBHeHHjI ,1l.eitcTBHTeJIbHbI, |
eCJIH BbIIIOJIHjleTCjI |
HepaBeHCTBO |
p2 _ 4q ~ 0, T. e. q ::;; ~p2. OTCIO,1l.a jlCHO, qTO MHO:>KeCTBO TOqeK KBa,1l.paTa, 6JIarOrrpHjlTCTBYlOIIIHX C06bITHIO A = {KOpHH ypaBHeHHjI ,1l.eitcTBHTeJIbHbI}, eCTb 06JIacTb D (Ha pHCYHKe 67 06JIacTb D 3aIIITpHxoBaHa):
D = {(p, q): q::;; |
~p2, |
°::;; P ::;; 1, |
0::;; q ::;; I} . |
|
|||
I1CKOMM BepOjiTHOCTb paBHa |
|
|
|
|
|
|
|
|
1 p2 |
|
|
|
• |
||
8(D) |
[ |
4" dp |
p3 |
1 |
1 |
||
P(A) = 8(n) |
= |
1 |
= 12 10= |
12' |
|||
|
6.3.17.B HeKoTopoit TOqKe C JIHHHH AB ,1l.JIHHbI L rrpOH30IIIeJI pa3pbIB.
KaKoBa BepOjiTHOCTb Toro, qTO TOqKa C y,1l.aJIeHa OT TOqKH A Ha
paccTOjlHHe He MeHbIIIe l?
6.3.18.B Kpyr pa,1l.Hyca r HaY,1l.aqy 6pollieHa TOqKa. KaKoBa BepOjiTHOCTb
Toro, qTO 9Ta TOqKa OKa:>KeTCjI BHyTpH BrrHcaHHoro B Kpyr rrpaBHJIbHOrO TpeyrOJIbHHKa?
6.3.19. Ha rrJIOIIIa,rr,KY, rrOKpbITYIO Ka<PeJIbHoit rrJIHTKoit co CTOPOHOit a =
= 6 CM, CJIyqaitHo rra,rr,aeT MOHeTa pa,rr,Hyca r = 2 CM. HaitTH BepojlTHOCTb Toro, qTO MOHeTa IIeJIHKOM OKa:>KeTCjI BHyTpH KBa,rr,paTa.
6.3.20. Ha oTpe3Ke [0,3] HaY,1l.aqy BbI6paHbI ,1l.Ba qHCJIa x H y. HaitTH BepOjiTHOCTb Toro, qTO 9TH qHCJIa y,1l.0BJIeTBOpjlIOT HepaBeHCTBaM
x 2 ::;; 3y ::;; 3x.
6.3.21.B CHrHaJIH3aTOp rrocTyrraIOT CHrHaJIbI OT ,1l.ByX YCTPOitCTB, rrpHqeM
rrocTyrrJIeHHe Ka:>K,1l.0ro H3 CHrHaJIOB He 3aBHCHT ,1l.pyr OT ,1l.pyra H
297
paBHOB03MO)KHO B JIIo6oil: IIpOMe)KYTOK BpeMeHH )J,JIHTeJIbHOCTblO
3'Iaca.CHrHaJIH3aTOp cpa6aTbIBaeT, eCJIH HHTepBaJI Me)K)J.y MoMeHTaMH IIOCTYIIJIeHHH CHrHaJIOB MeHee 0,15 'I. Hail:TH BepOHTHOCTb TOrO, 'ITOCHrHaJIH3aTOp cpa60TaeT B Te'IeHHe3 'IaCOB,eCJIH KroK)J,oe H3 YCTPOil:CTB IIOIIIJIeT IIO O)J,HOMY CHrHaJIY.
6.3.22.MHHHoe 3arproK)J,eHHe COCTOHT H3 MHH, paCIIOJIO)KeHHbIX B O)J,HY JIHHHIO Ha paCCTOHHHH 50 M O)J,Ha OT )J,Pyroil:. IIIHpHHa KOpa6JIH
20M. KaKoBa BepoHTHoCTb TOro, 'ITOKopa6JIb 6JIarOlIOJIY'IHOIIpOil:- )J,eT 'Iepe33arproK)J,eHHe?
6.3.23.B map BIIHcaH Ky6. Hail:TH BepoHTHoCTb Toro, 'ITOBbI6paHHM Ha- y)J,a'IyBHyTpH mapa TO'IKaOKroKeTCH BHyTpH Ky6a.
6.3.24.OIIHPMCb Ha aKCHOMbI TeopHH BepoHTHocTeil:, )J,OKa3aTb cJIe)J.ylOIII;He YTBep)K)J,eHHH:
a) P(0) = 0; 6) P(A) = 1 - P(A).
a a) TaK KaK 0 + 0 = 0, TO P(0 + 0) = P(O). ITo aKCHOMe (3.3):
P(0 + 0) = P(0) + P(O),
T.K. 0·0 = 0. 1haK, P(0) + P(O) = P(O), oTKY)J,a P(0) = O.
6)TaK KaK A + A = 0 H A· A = 0, TO IIO aKCHOMaM (3.2)-(3.3):
P(A + A) = P(A) + P(A) = P(O) = 1.
OTclO)J,a P(A) = 1 - P(A). |
• |
|
6.3.25. |
)l;oKa3aTb, 'ITOP(A + B) = P(A) + P(B) - P(AB). |
|
a TaK KaK A+B = A+(B-A) H B = (B-A)+AB, IIpH'IeMA·(B-A) = 0 |
||
H (B - |
A) . AB = 0, TO IIO aKCHOMe CJIO)KeHHH (3.3) HaxO)J,HM: P(A + B) = |
|
= P(A) + P(B - A) H P(B) = P(B - A) + P(AB), OTKY)J,a P(B - |
A) = |
=P(B) - P(AB). CJIe)J,oBaTeJIbHO, P(A + B) = P(A) + P(B) - P(AB). •
6.3.26.)l;oKa3aTb, 'ITO)J.JIH JII06bIX C06bITHil: A H B BbIIIOJIHeHO HepaBeH-
CTBO P(A + B) ~ P(A) + P(B).
6.3.27.)l;oKa3aTb, 'ITO)J.JIH JII06bIX C06bITHil: A, B H C
P(A + B + C) = P(A) + P(B) + P(C)-
-P(AB) - P(AC) - P(BC) + P(ABC).
6.3.28.ITYCTb P(A) = P(B) = !. )l;oKa3aTb, 'ITOP(AB) = P(A . B).
6.3.29.)l;oKa3aTb, 'ITOeCJIH A ;2 B, TO P(A - B) = P(A) - P(B).
AononHIIITenbHble 3aAaHIIIH
6.3.30. CKOJIbKO pa3 HY)KHO 6pOCHTb HrpaJIbHylO KOCTb, 'ITo6bIC BepOHTHOCTblO He MeHbme 0,6 XOTH 6bI O)J,HH pa3 BbIIIaJIO 6 O'IKOB?
6.3.31. 113 IIOCJIe)J,OBaTeJIbHOCTH 'IHCeJI1,2,3,4, ••• ,600 Hay)J,a'IyBbI6HpaIOTCH )J,Ba 'IHCJIa.KaKOBa BepOHTHOCTb Toro, 'ITOO)J.HO H3 HHX MeHbme 126, a )J,pyroe 60JIbme 126?
298
6.3.32. B JIOTepee pa3blrpbIBaeTCH 100 6I1JIeToB. BbmrpbIIIII1 BblIIaJIl1 Ha 20 6I1JIeToB. HeKTo npl106peJI 5 6I1JIeToB. Hail:TI1 BepOHTHOCTI1 CJIeAYIOml1X C06bITI1il::
a) BbmrpbIIII BblIIa,II;eT Ha Bce 5 6I1JIeTOB;
6) BbmrpbIIII BblIIa,II;eT XOTH 6bI Ha 1 6I1JIeT;
B)BbmrpbIIII BblIIa,II;eT Ha 2 611JIeTa.
6.3.33.BoceMb IIIaXMaTI1CTOB, cpe,II;11 KOTOPbIX Tpl1 rpoccMeil:cTepa, nYTeM :lKepe6beBKI1 ,II;eJIHTCH Ha ,II;Be KOMaH,II;bI no 4 'IeJIOBeKa.KaKoBa BePOHTHOCTb Toro, 'ITO,II;Ba rpoccMeil:cTepa nona,u,yT B O,II;HY KOMaHAY,
a |
eme O,II;I1H - B ,II;pyryIO? |
6.3.34. B |
Hml1Ke 20 ,II;eTaJIeil:, 4 113 HI1X - HeCTaH,II;apTHble. KaKOBa BepOHT- |
HOCTb Toro, 'ITOcpe,II;11 6 Hayra,II; B3HTbIX ,II;eTaJIeil: HeCTaH,II;apTHbIX
He OKa:lKeTCH?
6.3.35. )KeJIe3HO,II;OpO:lKHblil: COCTaB 113 9 BaroHoB 11 BaroHa-pecTopaHa<pop- Ml1pyeTcH np0l13BOJIbHbIM 06pa30M. KaKoBa BepOHTHOCTb Toro,
'ITO:
a) BarOH N~ 7 11 BarOH-peCTopaH pacnOJIO:lKeHbI pH,II;OM;
6) Me:lKAY BaroHoM N~ 7 11 BarOHOM-peCTopaHOM OKa:lKeTCH 5 Bara-
HOB?
6.3.36. ,nBe O,II;HOTl1nHble pa,II;110CTaHIII1I1 I1MeIOT 8 <pI1KCl1pOBaHHblx O,II;I1HaKOBbIX 'IaCTOT.KaKoBa BepOHTHOCTb Toro, 'ITOnpl1 He3aBI1CI1MOM 11
np0l13BOJIbHOM BbI60pe 'IaCTOTOHI1 OKa:lKYTCH HacTpoeHHbIMI1 Ha:
a) O,II;Hy 'IacTOTY; 6) pa3Hble 'IaCToTbI?
6.3.37. Hail:TI1 BepOHTHOCTb TOro, 'ITO30 CTY,II;eHTOB O,II;HOil: rpynnbI PO,II;I1-
JII1Cb:
a) B pa3Hble ,II;HI1 rO,II;a (B roAY 365 ,II;Heil:);
6) B O,II;I1H ,II;eHb rO,II;a; |
B) 8 MapTa; |
r) B pa3Hble MeCHIIbI rO,II;a; |
~) B ceHTH6pe; |
e)B pa3Hble ,II;HI1 ceHTH6pH.
6.3.38.HaY,II;a'IYBbI611paIOT 5 BOeHHOCJIY:lKamI1X 113 rpynnbI, COCTOHmeil: 113
4 o<pI1IIepoB 11 12 COJI,II;aT. KaKoBa BepoHTHoCTb TOro, 'ITOB rpynne 6Y,II;eT He 60JIee ,II;ByX o<pI1IIepoB?
6.3.39.HaiiTI1 BepOHTHOCTb TOro, 'ITOY'IaCTHI1KJIOTepel1 «CnOpTJIOTO - 6 113 49», KynI1BIIII1il: O,II;I1H 6I1JIeT, yra,II;aeT npaBI1JIbHO:
|
a) 2 HOMepa; |
6) 6 HOMepOB. |
6.3.40. |
KaKoBa BepoHTHoCTb TOro, 'ITOnp0l13BOJIbHO B3HToe TpeX3Ha'iHOe |
|
|
'II1CJIO,II;eJII1TCH Ha 3? |
|
6.3.41. |
HaTYPaJIbHble 'Il1CJIaOT 1 ,II;O n paCCTaBJIeHbI CJIY'Iail:Ho.HaiiTI1 Be- |
|
|
POHTHOCTb Toro, 'ITO'Il1CJIa5, 6, 7 pacnOJIO:lKeHbI PH,II;OM 11 np"TOM |
|
|
B nOpH,II;Ke B03paCTaHI1H. |
|
6.3.42. Ha 9 O,II;I1HaKOBbIX KapTO'IKaxHanl1CaHbI 6YKBbI E, E, P, P, C, C, H, r, 11. 8TI1 KapTO'IKI1 BhIKJIa,II;bIBaIOT HaY,II;a'IY B pH,II;. KaKoBa BepmITHOCTb TOro, 'ITOnpl1 3TOM nOJIY'Il1TCHCJIOBO PErPECCIIH?
299