Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Сборник задач по высшей математике 2 том

.pdf
Скачиваний:
68
Добавлен:
15.03.2015
Размер:
27.38 Mб
Скачать

Q ~ho npocTeil:rnee ,n;Hq,q,epeHIJ;HaJIbHOe ypaBHeHHe pernaeTC~ TpeXKpaT-

HbIM HHTerpHpOBaHHeM npaBoil: 'faCTH.CHa'faJIanOHH3HM CTeneHb KocHHyca:

16cos3 2x = 8(1 +cos4x)cos2x = 8cos2x+4· (2 cos4xcos2x) =

= 8 cos 2x + (cos2x + cos6x) = 12 cos2x + 4 cos6x.

IIocJIe nepBoro HHTerpHpOBaHH~ nOJIY'faeM

 

 

 

 

 

 

 

 

 

 

 

 

 

y" = 6 sin 2x + ~ sin 6x + eX -

 

x + C1 ,

 

 

 

 

(6.6)

nOCJIe BToporo

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

y' = -3 cos 2x - ~ cos6x + eX -

~2 + C1 x + C2,

 

 

(6.7)

a nOCJIe TpeTbero -

06TIIee perneHHe

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3 . 2

1 . 6

 

X

-

x

3

 

C x 2

 

+

C

 

 

C

(6.8)

Y = -2 sm x -

54 sm x + e

 

(; +

 

12

 

2 X +

IIo,n;cTaBJI~~ B (6.6)-(6.8)

3Ha'feHH~

x = 0,

y

 

= -1, y' = -~, y"

= 3,

nOJIy'fHMCOOTBeTCTBeHHO: 3 = 1 + C1 ,

-~ = -3 - ~ + 1 + C2 ,

-1 = 1 + C3 ,

oTKy,n;a C1 = 2, C2

= 2, C3 = -2. IIo,n;cTaBJI~~ 9TH 3Ha'feHH~ B BblpaJKeHHe

,LI;J1~ y, nOJIY'faeMTpe6yeMoe 'faCTHOeperneHHe

 

 

 

 

 

 

 

 

 

 

3 . 2

1 . 6

x

+ e

X

 

x 3

+ x

2

+

2

x-

2

Y = - - sm x - - sm

 

- -

 

 

 

 

.

 

'I

2

54·

 

 

 

 

 

6

 

 

 

 

 

 

 

 

3aMe"l,a'ltue. IIpoH3Be,n;eHH~ npOH3BOJIbHbIX nOCTO~HHbIX Ha KOHKpeTHble 'fHCJIa TaK:lKe MO:lKHO C'fHTaTb npOH3BOJIbHbIMH nOCTO~HHbIMH. HanpHMep,

B (6.8)

- 2

C1 x 2

MO:lKHO nHcaTb C1x

BMeCTO -2-'

Pewum'b c.//,eoY1O'l4ue oug)(pepe'lt'll,ua'//''b'lt'ble ypa6'1te'lt'IJ.R 6'blCWUX nopSlo-x;o6, a maM, zoe UMe10mCSl 'lta"l,a'//''b'lt'ble YC.//,06'IJ.R, 'ltaiJ.mu coom6emcm6Y1O'l4ue "I,acm- 'It'ble pewe'lt'IJ.R:

2.6.36.

yIV = cos2x.

2.6.37.

y(9) = ebx.

2.6.38.

ylll = 6x2.

2.6.39.

ylll = 4cos3 x-x.

2.6.40.ylll = cos X cos 2x cos 5x.

2.6.41. ylll = x 2 + 3x - 1, y(O) = 1, y'(O) = 2, y"(O) = 3.

2.6.42.yV = sin~, y(O) = y'(O) = 1, y"(O) = 8, ylll(O) = 6, yIV(O) = -2.

2.6.43.ylll = (x !42)5' y(O) = 0, y'(O) = 2, y"(O) = -~.

2.6.44.PernHTb ,n;Hq,q,epeHIJ;HaJIbHOe ypaBHeHHe 'feTBepToronop~,n;Ka

2yIV =3W.

Q ~ho ypaBHeHHe HMeeT BH,n; F(x, ylll, yIV) = 0, n09TOMY em nop~,n;OK MO:lKHO CHH3HTb Ha TpH e,n;HHHIJ;bI npH nOMOTIIH 3aMeHbI ylll = p, yIV = p'. IIpHXO,n;HM K ypaBHeHHIO 2p' = 3 vp. PacCMOTPHM ,n;Ba CJIy'fM:1) ecJIH p = 0,

90

HaxO)J,HM CI

T. e. y'"

= 0 TO Y = CI X 2 + C2 X + C3 -

He o6m:ee pemeHHe; 2) eCJIH p of. 0,

TO ~3 dp

= dx. OTclO)J,a nOJIyqaeM p~

= x + CI , HJIH y'" = ±(x + cd3/ 2 .

vP

 

 

 

 

nOCJIe)J,oBaTeJIbHble HHTerpHpOBaHHa )J,alOT

 

 

 

"

2(

C)Q.

 

C

 

Y = ±5 x +

I 2

+ 2,

 

y' = ±3~(X+ CI)~ + C2 x + C3 ,

 

8

9

-

2

+ C3 x + C4 •

 

Y = ±315(x

+ Cd 2" + C2 x

 

TaKHM 06pa30M, 06m:ee pemeHHe HMeeT BH)J,

y = ±3~5v(x + Cd 9 + C2 X 2 + C3 x + C4 ,

K KOTOPOMY npHcoe)J,HHHM nOJIyqeHHOe paHee He o6m:ee pemeHHe y = CI X 2 +

+ C2 x + C3 •

Pewum'b aaHHbte aurj)(jjepeHv,ua.t!'bHbte ypaflHeH'U.R 6btCWUX nopSlaX:06:

2.6.45.

(1 + X2 )ylll + 2xy" = x 3

2.6.46.

x 4 y'"

+ 2x3 y" = 1.

2.6.47.

x 4 y IV + 2X3 ylll = 1.

2.6.48.

ylll + y" tg x

= sin 2x.

2.6.49.

xylll - y" = x 2 ex .

2.6.50.

yIV -

2(y'" -

1) ctg x = O.

2.6.51. HathH qacTHoe pemeHHe )J,H<p<pepeHIIHaJIbHOrO ypaBHeHHa

xy'" - y" + x 2 - 2 = 0,

y)J,oBJIeTBopalOm:ee HaqaJIbHbIM YCJIOBHaM y(l) = 2, y'(l) = -~,

y"(l) = -3.

Q .n;aHHoe ypaBHemt:e HMeeT BH)J, F(x, y", y"') = 0, T. e. He cO)J,epX{HT aBHO y

H y'. IIo9TOMY nOJIOlKHM y" = p, y'" = p'. IIoJIyqaeM JIHHeiiHOe OTHOCHTeJIbHO HeH3BecTHoii <PYHKIIHH p = p(x) ypaBHeHHe

,

p 2

p -

x = x-x.

Ero 06m:ee pemeHHe HMeeT BH)J, (npoBepbTe!) p = x ( CI - X - ~). HaM OCTa-

eTca pemHTb npocTeiimee )J,H<p<pepeHIIHaJIbHOe ypaBHeHHe y" = CI X - x2 - 2.

ITO)J,CTaBHB H3 HaqaJIbHbIX YCJIOBHii x = 1, y" = -3, = O. lIHTerpHpya nOJIyqalOm:eeca paBeHCTBO y" = _x2 - 2, HMeeM y' = - ~3 - 2x + C2 .

CHoBa nO)J,CTaBJIaa HaqaJIbHble YCJIOBHa x = 1,

y'

= -~, HaxO)J,HM C2 = 2.

3

 

 

 

 

4

 

+ 2x + C3 •

 

3HaqHT, y' = - ~ - 2x + 2.

OTclO)J,a y = - f2 -

x 2

HaKoHeII,

 

 

 

 

1

 

+ C3 ,

nOJIyqHM C3

13

yqHTbIBM, qTO y(l) = 2, T. e. 2 = -12 - 1 + 2

= 12' H,

_

x4

x

2

2

13

 

 

 

CJIe)J,oBaTeJIbHO, y" -

- 12 -

 

+ x +

12'

 

 

 

2.6.52. PemHTb )J,H<P<PepeUIIHaJIbHOe ypaBHeHHe y"(l + 2lny') = 1.

91

a B 9TOM ypaBHeHlIH flBHO OTCYTCTBYIOT H apryMeHT x, H HCKOMM <PYHKlI,Hfl. IT09TOMY ero MO:lKHO OTHeCTH H K THny F(y, y', y") = 0, a, 3HaqHT, MO:lKHO

nOJIO:lKHTh y' = p = p(y), y" = p. p', H K THny F(x,y',y")

= 0,

a, 3HaQHT,

MO:lKHO nOJIO:lKHTh y' = p = p(x), y" = p'.

 

 

 

 

1) B nepBoM CJIYQae npHXO,1I,HM K ypaBHeHHIO pp' (1 + 2ln p)

= 1. 3,1I,eCh

p

,

~

6

.

 

= dy' a ypaBHeHHe nOCJIe pa3,1I,eJIeHHfl nepeMeHHhIX MO:lKeT

hITh 3allHCaHO

B

 

BH,1I,e p(l + 2lnp) dp = dy. OTCIO,1I,a Jp(l + 2lnp) dp = Jdy, T. e. (nocJIe

HHTerpHpOBaHHfl no QacTflM) p2lnp = y + C1 , HJIH (y')2In y' = y + C1 • ITo-

JIYQHJIH ypaBHeHHe, He pa3peIlIeHHoe OTHOCHTeJIhHO y' (H He pa3peIlIeHHoe OTHOCHTeJIhHO y'). Ero npOHHTerpHpOBaTh HeJIh3fl.

2) Bo BTOPOM CJIYQae npHXO,1I,HM K ypaBHeHHIO p'(l + 2lnp) = 1. 3,1I,eCh

dp

p' = dx' a ypaBHeHHe MO:lKeT 6hITh 3allHCaHO B BH,1I,e dp( 1+ 2ln p) = dx. OTCIO-

,1I,a J(1+2Inp) dp = Jdx, T.e. 2plnp-p = x+C2, HJIH 2y'lny'-y' = x+C2.

8TO ypaBHeHHe TaK:lKe HeJIh3fl npOHHTerpHpOBaTh.

3) Pe3YJIhTaThI npe,1I,hI)J.yIIIHX ,1I,eiiCTBHii MO:lKHO 06'he,1I,HHHThH nOJIYQHTh napaMeTpHQeCKYIO <POPMY 06IIIero peIlIeHHfl HCXO,1I,HOrO ypaBHeHHfl. ITOJIo- :lKHM y' = t. Tor,1I,a

 

y + C1 = t2 ln t,

 

 

 

{

= 2t In t -

t

 

 

x + C2

 

- 06IIIee peIlIeHHe ,1I,aHHoro ypaBHeHHfl B napaMeTpHQeCKOii <popMe.

Pew,um'b

aurj)(pepeuv,uaJl,'b'H,'bl.e ypa6ueuUSl:

 

 

2.6.53.

(yll)2 + (y"')2 = 1.

2.6.54.

y'ylll = 3(y")2.

 

2.6.55.

xy'" + y" = X + 1.

2.6.56.

(yll)2 _ 2y'y" + 3 = O.

 

2.6.57.

(yll)2 - y'y'" = (~r

 

 

 

2.6.58.

ylll = 3yy', yeO) = y'(O) = 1, y"(O) = ~.

 

2.6.59.

y" + 2y"ln y' = 1, yeO) = 1, y' (0) = -1.

 

 

 

 

3

 

2.6.60.

yllly2 - 3yy'y" + 2(y')3 + ~(yyll - (y')2) = Y2'

 

X

92

PeUJ,umb aurj)(jjepeHv,UallbH'bI.e ypa6HeH'U.R.:

2.6.61.(1 + X2)y" + (y')2 + 1 = O.

 

y'

 

 

2.6.62.

xy" = y' In x'

 

 

2.6.63.

xy'" + y" = 1 + x.

 

 

2.6.64.

(1 + x 2)y" - 2xy' = 0, y(O) = 0, y'(O) = 3.

2.6.65.

y'

+ lnx,

1

y"(1 + lnx) + x = 2

y(I) = 2'y'(I) = l.

2.6.66.

y" = ~ (1 + In ~),

y (1) =

~, y' (1) = l.

2.6.67.

yy" + (y')2 _ (y')3In y = O.

 

2.6.68.

y'" = (y")3.

 

 

2.6.69.

(x + I)y" - (x + 2)y' + x + 2 = O.

2.6.70.

3y'y" = y + (y')3 + 1, y(O) = -2, y'(O) = O.

2.6.71.

y2 + (y')2 _ 2yy" = 0, y(O) = y'(O) = l.

2.6.72.

2yy" - 3(y')2 = 4y2, y(O) = 1, y' (0) = O.

2.6.73.

y' = X(y")2 + (y")2.

 

 

KOHTponbHble Bonpocbl III 60nee CnOJKHble 3aACIHIIIR

2.6.74.IIo'ieMYo6~ee peWeHlIe )J.H<p<pepeHIJ;MaJIhHoro ypaBHeHMH BToporo

nOpH.II.Ka CO)J,ep:lKMT POBHO )J,Be nocToHHHhle? KaKYIO POJIh MrpaIOT OHM B CTpyKType 06~ero peweHMH?

2.6.75.MorYT JIM 'iepe3TO'iKY (xo,Yo) nJIOCKOCTM Oxy npOXO)J,MTh nHTh pa3JIM'iHhIX 'iacTHhIXpeweHMtl: )J,M<p<pepeHIJ;MaJIhHOro ypaBHeHMH TpeThero nopH)J,Ka? BTOpOro nOpH)J,Ka?

Pew,umb aurj)(jjepeHv,uallbH'bI.e ypa6HeHU.R.:

2.6.76. y'" (1 + (y')2) - 3y' (y")2 = O.

2.6.77.2yy" + (y")2 + (y')4 = O.

2.6.78.yy" + (y')2 = y2ln y.

2.6.79.yy" = (y')2 + y' Vr.y2"+----,-(y....,,')"'2.

2.6.80.1 + (y')2 = 2yy", y(I) = y'(I) = l.

2.6.81.y' = xy" + y" _ (y")2.

2.6.82.(x - I)y'" + 2y' = x + 1.

 

 

2X2

2.6.83.

X(y')2 y"

= (y')2 + lx4.

 

 

3

2.6.84.

';1 - x 2y" + JI - (y')2 = O.

93

§7. lU1HEViHbiE AVltlltllEPEHU.VlAl1bHbIE YPABHEHVlH BblCWErO nOPHAKA

np~BaplilTenbHble CB~eHIIISI

~JIU7-l.eti'H,'bIM 'HeoiJ'HOpoiJ'H'bIM iJug)(pepe'H'Il,ua.l/,'b'H'bIM ypaB'He'HUeM Bmopo~o nopS!iJ'lCa

Ha3bIBaeTCH YPaBHeHHe BH,lla

 

y" + p(x)y' + q(x)y = f(x),

(7.1)

r,lle <PYHKIIHH p(x), q(x) H

f(x) HenpepbIBHbI Ha HeKoTopoM OTpe3Ke [a, b].

~

IIpH 3THX YCJIOBHHX cYIIIecTByeT e,llHHCTBeHHoe pellIeHHe ypaBHeHHH (7.1), Y,llo-

BJIeTBOpHIOIIIee 3a,llaHHbIM

Ha'la.JIbHbIM YCJIOBHHM: y(xo) = Yo, y' (xo) =

Yo npH

Xo E [a,b].

«lIYHKIIHH f(x) Ha3bIBaeTCH npaBoti 'I.aCm'b1O ypaB'He'HUS! (7.1), a COOTBeTCTBYIOIIIee ypaBHeHHe Ha3bIBaeTCjI TaK)Ke JIHHeitHbIM ,llH<p<pepeHIIHa.JIbHbIM ypaBHeHHeM BToporo nOpH,llKa C npaBoit '1aCTbIO.IIpH f(x) == 0 rrpHXO,llHM K JIHHeitHoMY O,llHoPO,llHOMY ,llH<p<pepeHIIHa.JIbHOMY ypaBHeHHIO BTOpOro nOpH,llKa (HJIH ypaBHeHHIO 6e3 npaBoit '1aCTH)

y" + p(x)y' + q(x)y = O.

(7.2)

11111HeMHo He3aBIIIClilMbie (jlYHK4111111

~«lIYHKIIHH Y1 (x) H Y2(X) Ha3bIBalOTCH .l/,U'Heti'HO 'He3aBUCUM'bI.MU Ha OTpe3Ke [a, b],

eCJIH TO)K,lleCTBO

(7.3)

HMeeT MeCTO TOr,lla H TOJIbKO TOr,lla, KOr,lla C1 = C2 = O.

ECJIH)Ke CYIIIeCTBYIOT TaKHe '1HCJIaC1 H C2, H3 KOTOPbIX XOTH 6bI O,llHO OTJIH'IHO OT HyJIH, 'ITO,IIJIH Bcex x E [a, b] HMeeT MeCTO TO)K,lleCTBO (7.3), TO <PYHKIIHH Y1 (x)

H Y2(X) Ha3bIBaIOTCH .l/,U'Heti'Ho 3aBUCUM'bI.MU Ha OTpe3Ke [a, b]. $:

.n;aHHbIe onpe,lleJIeHHH PaBHOCHJIbHbI CJIe.rryIOIIIHM:

<PYHKIIHH Y1 (x) H Y2 (x) Ha3bIBalOTCH JIHHeitHo He3aBHCHMbIMH (3aBHCHMbIMH) Ha OTpe3Ke [a, b], eCJIH

Y1 (x)

Y1(X)

)

x E [a,b].

-(-) 1= const

( Y2(X)

== const ,

Y2 x

 

 

 

o JIHHeitHoit 3aBHCHMOCTH HJIH He3aBHCHMOCTH <PYHKIIHit Y1 (x) H Y2 (x) MO)KHO

CY,llHTb no Onpe,lleJIHTeJIIO

 

 

 

 

 

Y2(X )1

,

 

 

y~(x)

KOTOPbIit Ha3bIBaeTCH onpeiJe.l/,Ume.l/,eM Bpo'HC'lCo~O (HJIH npOCTO BpO'HC'lCUa'HOM).

TeopeMa 2.3. Ecnlll Y1(X) III

Y2(X) nlllHef.iHo 3aBlllCIIIMbi Ha OTpe3Ke [a,b]. TO

W[Y1, Y2] = 0 Ami BCex x 1113 [a, b].

 

 

94

maJl'bxyw cucmeMY pewexu1J,
(7.2)).

TeopeMa 2.4. Ecnlll Yl(X) III Y2(X) nlllHeCiHO He3aBlllCillMbie Ha OTpe3Ke [a,b] peweHIll" AIllcj>cj>epeHlIlllanbHoro ypaBHeHIll" (7.2), TO onpeAenlllTenb BpOHCKoro 3TIIIX cj>YHKlIIilCi OTnlll'leHOT Hyn" BO Bcex TO'lKaXOTpe3Ka [a, b].

CTpyKTypa o6w.ero peweHMSI T1MHeMHoro

AM4J4JepeH4MaTlbHOrO ypaBHeHMSI

TeopeMa 2.5. 061l.1ee peweHllle Yoo nlllHeCiHorO OAHopOAHoro AIllcj>cj>epeHlIlllanbHoro ypaBHeHIll" (7.2) IIIMeeT BillA

rAe Yl(X), Y2(X) - nlllHeCiHO He3aBIIICillMbie peweHIll" 3TOrO ypaBHeHIII".

TaKHM 06pa30M, MH TOro, '1To6bI nOJIy'lHTb o6nree peIlleHHe O.D;HOpO.D;HOro

ypaBHeHHH (7.2), .D;OCTaTO'lHO Hail:TH JII06bIe .D;Ba JIHHeil:Ho He3aBHCHMbIX '1aCTHbIX peIlleHHH 3Toro ypaBHeHHH (B 3TOM CJIy'laerOBopHT, 'ITOOHH o6pa3yIOT rjJyxiJaMex-

ypaBHeHHH

B HeKoTopbIX CJIY'laHXy.D;aeTCH TeM HJIH HHbIM cnoco6oM Hail:TH TOJIbKO O.D;HO

qacTHoe peIlleHHe Yl (x). Tor.D;a .D;pyroe '1aCTHOepeIlleHHe Y2 (x) MO)KHO Hail:uI no

<p0pMYJIe

[

x

 

Y2(X) = Yl (x) . ! + .exp -

jp(x) dX] dx,

 

Yl (x)

xo

 

 

r,ll,e Xo E [a,b].

06a peIlleHHH Yl(X) H Y2(X) npH 3TOM JIHHeil:Ho He3aBHCHMbI.

TeopeMa 2.6. 061l.1ee peweHllle YOH nlllHeCiHoro HeOAHopOAHoro AIllcj>cj>epeHlIlilanbHoro ypaBHeHIll" (7.1) npeACTaBmleTC" B BIllAe CYMMbl

YOH = Yoo + Y'i'

rAe Yoo - 061l.1ee peweHllle COOTBeTCTBYlOll.IerO OAHopOAHoro ypaBHeHIll" (7.2), a

Y'i - HeKOTopoe 'laCTHOepeweHllle HeOAHopOAHoro ypaBHeHIll" (7.1).

nMHeiiiHble OAHOpoAHble AM4J4JepeH4MaTlbHble ypaBHeHMSI BTOpOrO nopSiAKa c nOCTOSlHHblMM K034J4JM4MeHTaMM

~PaCCMOTpHM JIHHeil:Hoe O.D;HOpO.D;HOe .D;H<p<pepeHD;HaJIbHOe ypaBHeHHe (JIO,lJ,Y)

BTOporo nOpH.D;Ka C nOCTOHHHbIMH K03<P<PHD;HeHTaMH

 

Y" +PY' + qy = O.

(7.4)

KBa,ll,paTHOe ypaBHeHHe

 

k 2 + pk + q = 0

(7.5)

Ra3bIBaeTcH xapafCmepUCmU"I.eCfCUM ypaBxexueM MH ypaBHeHHH (7.4).

$:

95

Pn(X) -
MHoro'lJIeHCTerreHH n.

,Il;JUI COCTaBJIeHHH 06rn;ero pellIeHHH Yoo .D;Hq,q,epeHII,HaJIbHOro ypaBHeHHH (7.4)

He06xo.D;HMo HaitTH KOpHH kl H k2 cooTBeTcTBYIOrn;ero XapaKTepHCTH'IeCKoroypaBHeHHH (7.5) H rrpHMeHHTb CJIe.n;yIOllIJ'1OTeopeMY:

TeopeMa 2.7. nYCTb kl M k2 - KOpHM xapaKTepMCTM'leCKOrO ypaBHeHMft Allft ypaBHeHMft (7.4). TorAa 06Ll\ee peweHMe ypaBHeHMft (7.4) HaXOAMTCft no OAHOIiI M3 clleAYIOLl\MX Tpex <PoPMYll:

1) ECJ1M kl M k2 - AelilcTBMTellbHble M kl #- k2, TO

Yoo = ek1X(Cl + C2 X)i

3) eCllM kl,2 = (} ± (Ji - KOMnlleKCHo-COnpft>KeHHble KOPHM, TO

Yoo = eOX(Cl cos(Jx + C2 sin (Jx).

llMHeMHbie HeoAHOpOAHble AM~~epeH4ManbHble ypaBHeHMSI

(llHAY) BTOpOrO nopSiAKa C nOCTOSlHHblMM

K03~~M4IIIeHTaMM

IIOCKOJIbKY 06rn;ee pellIeHHe Yoo JIHHeitHoro O.D;HOPO.D;HOro ypaBHeHHH (7.4) JIerKO HaxO.D;HTCH rro TeopeMe 2.7, TO B CHJIY TeopeMbI 2.6 .D;JIH HaxolK.D;eHHH 06rn;ero

pellIeHHH JIHHeitHoro HeO.D;Hopo.D;HOrO YPaBHeHHH

 

y" +py' +qy = f(x)

(7.6)

OCTaeTCH HaitTH KaKoe-HH6Y.D;b O.D;HO ero '1acTHoepellIeHHe y... B Tex CJIY'IaHX,KOr.D;a rrpaBaH '1acTbf (x) HMeeT CrreU;HaJIbHblit BH.D;, '1acTHoepellIeHHe y.. HeO.D;Hopo.D;HQ-

ro ypaBHeHHH HaxO.D;HTCH MemoiJO.M neonpeiJeAenfl'btX 7Co3gupuquenmoB. 9TOT MeTO.D;

Ha3bIBaeTCH TaKlKe MeTO.D;OM rro.D;60pa '1acTHoropellIeHHH Heo.D;HOpO.D;HOro ypaBHeHHH H CBO.D;HTCH K CJIe.n;yIOIlI;HM .D;BYM CJIY'IaHM.

CJlyqa§: 1. f(x) = eOx Pn(X), r.D;e

a) ECJIH (} He HBJIHeTCH KopHeM ypaBHeHHH (7.5), TO '1aCTHOepellIeHHe y.. MOlKHO HCKaTb B BH.D;e

y.. = eOXQn(X},

r.D;e Qn(X) - MHOrO'lJIeHCTerreHH n C HeH3BecTHblMH K03q,q,HU;HeHTaMH.

6} ECJIH (} - KopeHb YPaBHeHHH (7.5) KpaTHOCTH k, TO '1aCTHoepemeHHe y..

MOlKHO HCKaTb B BH.D;e

y.. = XkeoxQn(X).

B '1acTHOCTH,eCJIH f(x) = Pn(X), T. e. (} = 0, TO y.. HMeeTCH B BH.D;e y.. = Qn(X)

(eCJIH (} = 0 He HBJIHeTCH KopHeM XapaKTepHCTH'IeCKoroYPaBHeHHH) HJIH B BH-

.D;e y .. = xk . Qn(X} (eCJIH (} = 0 - KOpeHb KpaTHOCTH k XapaKTepHCTH'IeCKOrO YPaBHeHHH).

96

CnY'Iail 2. f(x) = eQ",[pn(x)cos,Bx + Qm(x)sin,Bx], r,ll;e Pn(X) H Qm(X) -

MHoraqJIeHbI CTerreHH n H m, COOTBeTCTBeHHO. IIoJIolKHM N = max(n, m).

a)ECJIH a ±,Bi He HBJIHIOTCH KOpHHMH ypaBHeHHH (7.5), TO

6)ECJIH a ±,Bi - KOpHH ypaaHeHHH (7.5) KpaTHOCTH k, TO

B qacTHOCTH, eCJIH f(x)

= acos,Bx + bsin,Bx, T. e. a = m = n = 0, TO qacTHoe

pemeHHe Hrn;eTCH B BH,lI;e Y'l

= A cos,Bx + B sin,Bx (eCJIH qHCJIa ±,Bi He HBJIHIOTCH

KOpHHMH XapaKTepHCTHqeCKOrO ypaaHeHHH) HJIH B BH,lI;e Y'l = (Acos,Bx+Bsin,Bx)·x

(eCJIH qHCJIa ±,Bi - KOpHH XapaKTepHCTHqeCKOrO ypaaHeHHH).

TeopeMa 2.B. Ecnlll Y'll III Y'l2 - 'laCTHblepeWeHlIIlI COOTBeTCTBeHHO ypaBHeHllliil

y" + py' + qy = /1 (x)

III

y" + py' + qy = /2(x),

TO cPYHKlIIIIlI Y'l = Y'll + Y'l2 - 'laCTHOepeweHllle ypaBHeHlIIlI

y" + py' + qy = /1 (x) + /2(x).

MeTOA Bapllla4111111 npOlll3BOnbHbiX nOCTOJlHHblX

AflJl onpE!AeneHIIIJI '"IaCTHOrOpeWeHIIIJI HeoAHOpoAHOrO

ypaBHeHIIIJI

B 06rn;eM CJIyqae, B TOM qHCJIe TOr,ll;a, KOr,ll;a rrpaaaH qacTb .ITH,I1;Y HMeeT BH,lI;, He rrpe)J;yCMOTpeHHblil: rrpe)J;bl)J;yrn;HM rrYHKTOM, )J;JIH OTblCKaHHH qaCTHOro pemeHHH HCIIOJIb3YIOT MemoiJ 6apuaquu (T. e. H3MeHeHHH) npOU360A'bH"'X nOCmOJlHH"'X (HJIH

MemoiJ JIaapa'H:JICa). CYTb era B CJIe)J;yIOrn;eM. IIycTb Yl(X) H Y2(X) - <pYH,lI;aMeHTaJIbHaH CHCTeMa pemeHHil: O,ll;Hopo,ll;HOrO ypaaHeHHH (7.4). Tor,ll;a qacTHoe pemeHHe MOlKHO rrpe,ll;CTaaHTb B BH,lI;e

Pa3YMeeTCH, MeTO,ll; BapHarr;HH rrpOH3BOJIbHbIX rrOCTOHHHbIX MOlKHO rrpHMeHHTb H B CJIyqae, KOr,ll;a rrpaaaH qacTb .ITH,IJ;Y HMeeT BH,lI;, paccMoTpeHHblil: B rrpe,ll;bI)J;yrn;eM IIYHKTe.

4 CooPH•• _ . no ""oweA NareNarr.... 2 "YJlC

97

YpaBHeHllle 3iiinepa

~,II;H<p<pepeHIJ;HaJIbHOe ypaBHeHHe BTOpOrO nOpH,!I;Ka BH,!I;a

x 2y" +pxy' +qy = 0

Ha3b1BaeTCH ypa6He'HUeM 91:t.n,epa.

TIO,!l;CTaHoBKoit y = e t OHO CBO,!l;HTCH K .nO,II;Y C nOCTOHHHbIMH K03<P<PHIJ;HeH-

TaMH.

0606Iu;eHHOe ,!I;H<p<pepeHIJ;HaJIbHOe ypaBHeHHe 8itJIepa BTOpOro nOpH,!I;Ka

(ax + b)2y + p(ax + b)y' + qy = 0

npHBO,!l;HTCH K .nO,II;Y C nOCTOHHHbIMH K03<P<PHIJ;HeHTaMH nO,!l;CTaHoBKoit ax+b = et.

11111HeiiiHbie AIII«t>«t>epeH4I11anbHble ypaBHeHIIISI C nOCTOSlHHblMIil K03«t>«t>1II4I11eHTaMIil nopSiAKa Bblwe BToporo

.nHHeitHble ,!I;H<p<pepeHIJ;HaJIbHble ypaBHeHHH C nOCTOHHHbIMH K03<P<PHIJ;HeHTaMH

nOpH,!I;Ka n ~ 2

peIIIaIOTCH aHaJIOrHqHO ypaBHeHHHM BToporo nOpH,!I;Ka, onHpaHCb Ha cooTBeTcTBYIOIu;He onpe,!l;eJIeHHH H TeopeMbI. B qaCTHOCTH:

~ 1. CHcTeMa <PYHKIJ;Hit YI = YI(X),

Y2 = Y2(X), ... , Yn

= Yn(X) Ha3b1BaeTCH

.n,u'He1:t'Ho 3a6ucuMo1:t Ha oTpe3Ke [a, b],

eCJIH cYIu;ecTBYIOT nOCTOHHHble CI, C2,. ... ,

Cn, He Bce paBHble HYJIIO TaKHe, qTO HMeeT MeCTO TO)K,!I;eCTBO

 

CIYI + C2Y2 + ... + CnYn == 0,

x E [a, b].

ECJIH )Ke 3TO TOlK,!I;eCTBO HMeeT MeCTO TOJIbKO npH CI = C2

... = Cn = 0, TO

,!I;aHHble <PYHKIJ;HH .n,UHe1:tHo He3a6UCU,M,'bI. Ha OTpe3Ke [a, b].

$

~ BpOHC7CuaH CHCTeMbI <PYHKIJ;Hit YI, Y2, ... , Yn HMeeT BH,!I;

 

 

YI

Y2

Yn

 

,

,

,

 

YI

Y2

Yn

(n-l)

Yn

~2. Xapa1l:mepucmu"I,ec1I:oe ypa6HeHue, cooTBeTcTBYIOIu;ee O,!l;HOPO,!l;HOMY ,!I;H<p<pe-

peHIJ;HaJIbHOMY ypaBHeHHIO n-ro nOpH,!I;Ka

(7.7)

HMeeT BH,!I;

(7.8)

98

TeopeMbI 2.3-2.6, C<P0PMYJIHpOBaHHble AJIH YPaBHeHHit BTOpOro IIopH,n;Ka, TaKlKe uMeiOT MeCTO H IIpH JIi060M n> 2. ~

3. MeTo,n; BapHaIJ;HH IIPOH3BOJIbHblX IIOCTOHHHbIX AJIH Heo,n;Hopo,n;Horo JIHHeitHGrO ,ll;H<p<pepeHIJ;HaJIbHOrO YPaBHeHHH TpeTbero IIOpH,ll;Ka C IIOCTOHHHbIMH K03<P<PHIJ;H-

ylll + py" +qy' + ry = f(x)

(7.9)

COCTOHT B CJIe.n;yiOIIJ;eM: o6IIJ;ee peIIIeHHe ypaBHeHHH (7.9)

HMeeT BH,ll;

r,ll;e Yl, Y2, Y3 - <PYH,ll;aMeHTaJIbHaH CHCTeMa peIIIeHHit O,ll;HOpO,ll;HOrO ypaBHeHHH

y"' + py" + qy' + ry = 0,

a <PYHKIJ;HH C1(x), C 2(x), C3(X) - HaXO,ll;HTCH H3 CHCTeMbI ,ll;H<p<pepeHIJ;HaJIbHblX

YPaBHeHHit IIepBoro IIOpH,ll;Ka

{C~Yl + C~Y2 + C~Y3 = 0,

C~y~ + C~y~ + C~y~ = 0,

C~y~' + C~y~ + C3Y~ = f(x).

2.7.1.YCTaHoBMTb JIMHeilHYIO 3aBMCMMOCTb MJIM He3aBMCMMOCTb ,1I,aHHbIX nap <PYHKU;Mil Ha 06JIaCTHX MX onpe,1I,eJIeHMH.

a) x, cos x;

6) x, 2x;

B) tgx, ctgx.

 

a a) WYHKU;MM Y1(X) = x M Y2(X) = cos x onpe,1I,eJIeHbI Ha Bceil npHMOil, T.e.

npIl x E (-00, +00). TO:>K,1I,eCTBO C1 x + C2 cos X == 0 MMeeT MeCTO TOJIbKO npM

C1 = C2 = O. B caMOM ,1I,eJIe, eCJIM npe,1I,nOJIO:>KMTb npOTMBHoe, T. e. qTO 9TO TO:>K,1I,eCTBO I1MeeT MeCTO, HanpIlMep, npIl C2 =F 0, TO nOCJIe ero ,1I,M<p<pepeHU;M-

 

 

 

 

 

·

==

0

 

.

 

 

C1

'

pOBaHIIH nOJIyqIlM HOBoe TO:>K,1I,eCTBO C1 ~ C2 sm x

 

,OTKY,1I,a sm x ==

C

2

X E (-00,+00), qTO HeBepHO. ECJIM:>Ke npe,1I,nOJIO:>KMTb, qTO C2

 

= 0,

TO

nOJIyqMM C1 x == 0, qTO TaK:>Ke HeB03MO:>KHO npIl C1 =F

O. TaKMM 06pa30M,

TO:>K,1I,eCTBO C1 x + C2 cos x

== 0 MMeeT MeCTO TOJIbKO npIl C1 = C2

= 0, II,

CTaJIO 6bITb, <PYHKU;MII X

II

cos x

JIMHeilHO He3aBIICMMbI Ha ,1I,eilCTBMTeJIbHOil

npHMoil.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3aMeTIIM, qTO co; X

t;

const

II CO~X

t; const,

T. e. <PYHKU;III1

x

II cos x

Y,1I,OBJIeTBOPHIOT II ,1I,pyrOMY onpe,1I,eJIeHIIIO JIMHeilHOil He3aBIICIIMOCTII.

 

 

 

6) lIMeeM ~ == 2 npM

x =F

0 (TO:>K,1I,eCTBO MO:>KHO ,1I,oonpe,1I,eJIIITb no·He-

npepbIBHocTII M npM x = 0), TI09TOMY <PYHKU;I1M Y1 = 2x if Y2 = X -

JIIIHeilHO

3aBIICIIMbI.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B) BBII)J.y nepMO,1I,MqHOCTII <PYHKU;Mil Y1

= tg X II Y2

= ctg x C nepIlO,1I,OM

T = 71' ,1I,OCTaTOQHO YCTaHOBMTb I1X JIIIHeilHYIO He3aBMCMMOCTb B MHTepBaJIe

x E (0,71') (x =F !i ). lIMeeM Yy1

= ttgX = sin: x = tg2 X t; const x

E (0,71'),

2

 

2

 

C gx

cos x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

99

 

 

 

 

 

 

 

 

 

 

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]