- •1. Общие замечания
- •2.2. Основные понятия
- •2.4.1. Оккупационные теории
- •2.4.3. Теории конформационных изменений рецептора
- •3.2. Кривая «доза-эффект»
- •3.2.1 Среднеэффективная доза (ед50)
- •3.2.2. Относительная активность
- •3.3. Биологическая изменчивость
- •3.4. Совместное действие нескольких токсикантов на биообъект
- •3.4.1. Параллельный сдвиг кривой доза-эффект
- •3.4.2 Снижение максимальных значений кривой «доза-эффект»
- •3.4.3. Параллельный сдвиг с одновременным снижением максимальных значений
- •3.5. Определение кажущихся констант диссоциации комплекса агонист-рецептор
- •4.1.1. Анализ зависимости «доза-эффект» методом формирования подгрупп
- •4.1.2. Анализ зависимости «доза-эффект» без формирования подгрупп
- •4.1.3.2. Определение безопасных доз действия токсикантов
4.1.2. Анализ зависимости «доза-эффект» без формирования подгрупп
При изучении действия быстро распределяющихся, но медленно выводящихся из организма веществ можно обеспечить их постепенное внутривенное введение лабораторному животному, до наступления вполне определенного по выраженности токсического эффекта (например, снижение частоты дыхания на 40%). Таким образом появляется возможность для каждого отдельного организма определить дозу вещества, вызывающую желаемый эффект. Исследование проводится на достаточно большой группе животных. Если построить график зависимости числа животных, у которых эффект развился от величины использованных доз, то получим уже известную S-образную кривую, анализ которой осуществляется по общим правилам.
4.1.3. Зависимость «доза-эффект» по показателю летальность
4.1.3.1. Общие представления
Поскольку смертельный исход после действия токсиканта - альтернативная реакция, реализующаяся по принципу «все или ничего», этот эффект считают наиболее удобным для определения токсичности веществ, его используют для определения величины среднесмертельной дозы (ЛД50).
Определение острой токсичности по показателю «летальность» проводится методом формирования подгрупп (см. выше). Введение токсиканта осуществляется одним из возможных способов (энтерально, парентерально) при контролируемых условиях. При этом необходимо учитывать, что способ введения вещества самым существенным образом сказывается на величине токсичности (таблица 4).
Таблица 4. Влияние способа введения на токсичность зарина и атропина для лабораторных животных
|
Токсикант |
Животное |
Способ введения |
Смертельная доза (мг/кг) |
|
Зарин |
Крысы |
подкожно внутримышечно внутривенно через рот |
0,12 0,17 0,05 0,6 |
|
Атропин |
Мыши |
внутривенно через рот |
800 90 |
Используются животные одного пола, возраста, веса, содержащихся на определенной диете, при необходимых условиях размещения, температуре, влажности и т.д. Исследования повторяют на нескольких видах лабораторных животных. После введения тестируемого химического соединения проводят наблюдения, определяя количество павших животных, как правило за период 14 суток. В случае нанесения вещества на кожу, совершенно необходимо регистрировать время контакта, а также оговаривать условия аппликации (из замкнутого или открытого пространства осуществлялось воздействие). Очевидно, что степень поражения кожи и выраженность резорбтивного действия являются функцией как количества нанесенного материала, так и продолжительности его контакта с кожей. При всех, помимо ингаляционного, способах воздействия экспозиционная доза обычно выражается как масса (или объем) тестируемого вещества на единицу массы тела (мг/кг; мл/кг).
Для ингаляционного воздействия экспозиционная доза выражается как количество тестируемого вещества, присутствующего в единице объема воздуха: мг/м3 или части на миллион (ppm - parts per million). При этом способе воздействия очень важно учитывать время экспозиции. Чем продолжительней воздействие, тем выше экспозиционная доза, выше потенциал неблагоприятного действия. Получаемая информация о зависимости «доза-эффект» для различных концентраций вещества во вдыхаемом воздухе должна быть получена при одинаковом времени экспозиции. Эксперимент может быть построен и иначе, а именно различные группы экспериментальных животных ингалируют вещество в одинаковой концентрации, но в течение различного времени.
Для приблизительной оценки токсичности ингаляционно действующих веществ, одновременно учитывающей и концентрацию токсиканта и время его экспозиции, принято использовать величину «токсодоза», рассчитываемую по формуле, предложенной Габером в начале века:
W = C t , где
W - токсодоза (мг мин/м3)
С - концентрация токсиканта (мг/м3)
t - время экспозиции (мин)
Предполагается, что при непродолжительной ингаляции веществ одинаковый эффект (гибель лабораторных животных) будет достигаться как при краткой экспозиции высоких доз, так и более продолжительном воздействии веществ в меньших концентрациях, при этом произведение времени на концентрацию для вещества остается неизменным. Наиболее часто к определению токсодоз веществ прибегали для характеристики боевых отравляющих веществ. Величины токсичности некоторых ОВ представлены на таблице 5.
Таблица 5. Токсодозы отравляющих веществ (при ингаляционном воздействии)
|
Вещества |
LCT50 (мг мин/м3) |
|
1. Удушающего действия - хлор - фосген - дифосген - хлорпикрин 2. Общеядовитого действия - мышьяковистый водород - синильная кислота - хлорциан 3. Кожно-нарывного действия а. соединения мышьяка: - метиларсиндихлорид - этиларсиндихлорид - фениларсиндихлорид - 2-хлорвиниларсиндихлорид б. иприты: - дихлор-диэтилсульфид - трихлор-триэтиламин 4. Нервно-паралитического действия (ФОВ) - табун - зарин - зоман - Vx |
19000 3200 3200 800
5000 2000 7000
3000 3000 - 5000 2600 1200 - 1500
1500 1500
400 70 100 100 |
(M. Kruger, 1991)
Кривая «доза-летальность» как правило аналогична по форме кривой распределения кумулятивной частоты эффекта для других зависимостей «доза-эффект» (см. выше). Для целей сравнения получаемых данных и статистической их обработки кривую преобразуют в форму линейной зависимости, используя систему координат «log D - пробит».
Токсичность по показателю «летальность» как правило устанавливается по определенному уровню гибели животных в группе. Наиболее часто в качестве контрольного уровня используется 50% гибель животных, так как это соответствует медиане кривой распределения дозы, вокруг которой симметрично концентрируется большинство позитивных ответных реакций (см. выше). Эта величина и получила название - среднелетальная доза (концентрация). По определению вещество, действуя в этой дозе вызывает гибель половины популяции животных.
Концепция определения ЛД50 веществ была впервые сформулирована Trevan в 1927 году. С этого момента начинается становление токсикологии как настоящей науки, оперирующей количественными характеристиками исследуемого свойства (величина токсичности).
В качестве других уровней смертности, подлежащих определению, могут быть выбраны величины ЛД5, ЛД95, которые согласно законам статистики близки соответственно к порогу и максимуму токсического действия и являются границами дозового интервала, в рамках которого, в основном, и реализуется эффект.
По этическим и экономическим соображениям в опыт для определения ЛД50 стараются брать минимальное количество лабораторных животных. В этой связи определение искомой величины всегда сопряжено с фактором неопределенности. Эта неопределенность учитывается путем нахождения 95% доверительного интервала определяемой величины. Дозы, попадающие в этот интервал, не являются среднесмертельными лишь с вероятностью менее 5%. Доверительный интервал величины ЛД50 значительно меньше, чем доверительные интервалы доз других уровней летальности, что является дополнительным аргументом в пользу именно этой характеристики параметров острой токсичности.
Как уже указывалось важной характеристикой любой кривой «доза-эффект» является её крутизна. Так, если два вещества имеют статистически не различимые значения величин ЛД50 и одинаковую крутизну кривой токсичности «доза-эффект» (т.е. статистически не различимые величины значений соответственно ЛД16 и ЛД84), они, по показателю летальность - эквитоксичны в широком диапазоне доз (вещества А и В на рис. 13). Однако вещества, имеющие близкие значения величин ЛД50, но различную крутизну кривой токсичности существенно отличаются по своим токсическим свойствам (вещество С на рис. 13).

Рисунок 13. Зависимости «доза-эффект» токсикантов с близкими значениями величин ЛД50, но различной крутизной наклона
Вещества с пологой зависимостью «доза-эффект» представляют большую опасность для лиц с выраженной гиперчувствительностью к токсикантам. Вещества с высокой крутизной зависимости более опасны для всего населения, поскольку даже несущественное увеличение доза по сравнению с минимально действующей приводит к развитию эффекта у большинства популяции.
