
- •Курс лекций по математике
- •§ 2. Способы задания множеств
- •§ 3. Отношения между множествами. Графическая иллюстрация множеств
- •§ 4. Операции над множествами
- •§ 5. Законы операций над множествами
- •Контрольные вопросы
- •§ 6. Число элементов объединения двух и трех конечных множеств
- •§ 7. Понятие разбиения множества на классы
- •Контрольные вопросы
- •Глава 2. Математические предложения § 1. Высказывания и операции над ними. Равносильные высказывания
- •§ 2. Законы алгебры высказываний
- •Контрольные вопросы
- •§ 3. Предикаты и операции над ними
- •Контрольные вопросы
- •§ 4. Высказывания с кванторами и их отрицания
- •Контрольные вопросы
- •§ 5. Отношение следование и равносильности между предложениями. Необходимое и достаточное условие
- •Контрольные вопросы
- •§ 6. Строение и виды теорем
- •Контрольные вопросы
- •Глава 3. Математические понятия § 1. Объем и содержание понятия. Отношения между понятиями
- •§ 2. Определение понятия. Требования к определению понятия
- •Контрольные вопросы
- •Глава 4. Математические доказательства § 1. Умозаключения и их виды
- •§ 2. Схемы дедуктивных умозаключений
- •§ 3. Проверка правильности умозаключений
- •§ 4. Способы математического доказательства
- •Контрольные вопросы
- •Глава 5. Соответствия §1. Упорядоченная пара. Декартово произведение двух множеств
- •§ 2. Соответствие между элементами множеств. Способы задания соответствий
- •§ 3. Взаимно однозначное соответствие
- •§ 4. Равномощные множества. Счетные и несчетные множества
- •Контрольные вопросы
- •§ 5. Определение числовой функции. Способы задания функций. Свойства функций
- •§ 6. Виды функций
- •§ 7. Обратная функция
- •Контрольные вопросы
- •Глава 6. Отношения на множестве § 1. Понятие отношения. Способы задания отношений
- •§ 2. Свойства отношений
- •§ 3. Отношение эквивалентности. Связь отношения эквивалентности с разбиением множества на классы
- •§ 4. Отношение порядка. Упорядоченные множества
- •Контрольные вопросы
- •Глава 7. Выражения. Уравнения. Неравенства § 1. Числовое выражение и его значение
- •§ 2. Числовые равенства и их свойства
- •§ 3. Числовые неравенства и их свойства
- •§ 4. Выражение с переменной, его область определения. Тождество.
- •§ 5. Уравнения с одной переменной. Равносильные уравнения
- •Глава 1. Элементы теории множеств 2
§ 3. Отношение эквивалентности. Связь отношения эквивалентности с разбиением множества на классы
Определение. ОтношениеR на множествеХ называется отношениемэквивалентности, если оно рефлексивно, симметрично и транзитивно.
Пример. Рассмотрим отношение «ходнокурснику» на множестве студентов педфака. Оно обладает свойствами:
рефлексивности, т.к. каждый студент является однокурсником самому себе;
симметричности, т.к. если студент хявляется однокурсником студентау, то и студентуявляется однокурсником студентах;
транзитивности, т.к. если студент х- однокурснику, а студенту– однокурсникz, то студентх будет однокурсником студентаz.
Таким образом, данное отношение обладает свойствами рефлексивности, симметричности и транзитивности, а значит, является отношением эквивалентности. При этом множество студентов педфака можно разбить на подмножества, состоящие из студентов, обучающихся на одном курсе. Получаем 5 подмножеств.
Отношением эквивалентности являются также, например, отношение параллельности прямых, отношение равенства фигур. Каждое такое отношение связано с разбиением множества на классы.
Теорема. Если на множествеХзадано отношение эквивалентности, то оно разбивает это множество на попарно непересекающиеся подмножества (классы эквивалентности).
Верно и обратное утверждение: если какое-либо отношение, заданное на множестве Х, порождает разбиение этого множества на классы, то оно является отношением эквивалентности.
Пример. На множествеХ= {1; 2; 3; 4; 5; 6; 7; 8} задано отношение «иметь один и тот же остаток при делении на 3». Является ли оно отношением эквивалентности?
Построим граф данного отношения:
Данное отношение обладает свойствами рефлексивности, симметричности и транзитивности, следовательно, является отношение эквивалентности и разбивает множество Х на классы эквивалентности. В каждом классе эквивалентности будут числа, которые при делении на 3 дают один и тот же остаток:Х1= {3; 6},Х2= {1; 4; 7},Х3= {2; 5; 8}.
Считают, что класс эквивалентности определяется любым своим представителем, т.е. произвольным элементом этого класса. Так, класс равных дробей можно задать, указав любую дробь, принадлежащую этому классу.
В начальном курсе математики также встречаются отношения эквивалентности, например, «выражения хиуимеют одинаковые числовые значения», «фигурахравна фигуреу».
§ 4. Отношение порядка. Упорядоченные множества
Определение.ОтношениеR на множествеХ называется отношениемпорядка, если оно транзитивно и асимметрично или антисимметрично.
Определение.ОтношениеR на множествеХ называется отношениемстрогого порядка, если оно транзитивно и асимметрично.
Примерыотношений строгого порядка: «больше» на множестве натуральных чисел, «выше» на множестве людей и др.
Определение.ОтношениеR на множествеХ называется отношением нестрогого порядка, если оно транзитивно и антисимметрично.
Примерыотношений нестрогого порядка: «не больше» на множестве действительных чисел, «быть делителем» на множестве натуральных чисел и др.
Определение. МножествоХназываютупорядоченным, если на нем задано отношение порядка.
Пример. На множествеХ= {1; 2; 3; 4; 5} заданы два отношения: «ху» и «х– делительу».
Оба эти отношения обладают свойствами рефлексивности, антисимметричности и транзитивности (постройте графы и проверьте свойства самостоятельно), т.е. являются отношением нестрогого порядка. Но первое отношение обладает свойством связности, а второе – нет.
Определение.Отношение порядкаR на множествеХ называетсяотношением линейного порядка, если оно обладает свойством связности.
В начальной школе изучаются многие отношения порядка. Уже в первом классе водятся отношение «меньше», «больше» на множестве натуральных чисел, «короче», «длиннее» на множестве отрезков и др.