Скачиваний:
362
Добавлен:
12.03.2015
Размер:
438.78 Кб
Скачать

10 –Εcd.

Логарифм величины, обратной пропусканию, носит название экстинкции Е или оптической плотности D:

E = D = = εcd.

Зависимости пропускания Ти оптической плотностиD от длины волны падающего света называютсяспектральными характеристиками образца.

Если в растворе содержится несколько веществ, то результирующая оптическая плотность D равна сумме оптических плотностей компонент:

D = lg (I0/I) = D1+D2+… = [ε1с1 + ε2с2+…]d.

Именно поглощенное излучение представляет основной интерес для исследования, так как по закону Бугера-Ламберта-Беера оптическая плотность зависит от толщины слоя и концентрации составных частей поглощающей системы. Если свет проходит через различные поглощающие системы последовательно, то результирующая оптическая плотность D не зависит от порядка их расположения.

Условием применимости закона Беера является пропорциональность числа действующих центров поглощения концентрации растворенного вещества. В реальных растворах, наряду с молекулами поглощающего вещества, на процесс поглощения влияют своими химическими и электростатическими свойствами другие молекулы. Все эти отдельные частички соединены в один общий оптический комплекс, поэтому для концентрированных растворов с их красящими составными частями низкой степени дисперсности, закон Беера теряет свою силу.

Явление поглощения света веществом объясняется тем, что при прохождении электромагнитной волны через вещество часть энергии волны затрачивается на возбуждение колебаний оптических электронов атомов этого вещества. Частично эта энергия вновь возвращается излучению в виде вторичных волн, излучаемых атомами в возбужденном состоянии, частично же она переходит в другие виды энергии (например, во внутреннюю энергию вещества).

Так, в диэлектриках нет свободных электронов, способных направленно двигаться под действием электрического поля электромагнитной волны, и поглощение света связано с явлением резонанса при вынужденных колебаниях электронов в атомах и атомов в молекулах. Поэтому они поглощают свет избирательно в зависимости от частоты падающего света. Поглощение велико лишь в областях частот, близких к частотам собственных колебаний электронов в атомах и атомов в молекулах. Для света всех остальных частот диэлектрик практически прозрачен, то есть его коэффициент поглощения близок к нулю.

Наиболее ярко явление резонансного поглощения обнаруживается у разреженных одноатомных газов, обладающих линейчатым спектром поглощения. Дискретные частоты интенсивного (рис. 2). За пределами этих полосkпримерно равен нулю, то есть диэлектрики прозрачны. Расширение полос поглощения при переходе вещества из одного агрегатного состояния в другое объясняется взаимодействием атомов друг с другом.

Иная картина наблюдается в металлах. В конденсированном состоянии металлы содержат огромное количество свободных электронов. В электрическом поле световой волны свободные электроны совершают упорядоченное движение и излучают вторичные волны. Благодаря наложению первичной и вторичной волн образуется интенсивная отраженная волна и сравнительно слабая преломленная. Преломленная волна быстро поглощается по мере распространения в металле. Ее энергия расходуется на джоулеву теплоту, которая выделяется токами проводимости, возникающими при действии света на свободные электроны.

Соседние файлы в папке ОПТИКА