Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
зотк.docx
Скачиваний:
74
Добавлен:
12.03.2015
Размер:
1.22 Mб
Скачать

15. Электрохимическая коррозия металлов. Коррозионные диаграммы

Коррозионные диаграммы Отдельно полученные анодные и катодные поляризационные кривые еще не описывают скорость коррозионного процесса. Последняя определяется скоростью протекания самой медленной, лимитирующей стадии. Эту стадию называют контролирующим фактором. Для его определения наибольшее распространение получил графический метод. По этому методу анализ коррозионных систем принято проводить с помощью диаграмм, на которых графически отражена кинетика анодной и катодной реакций. Наиболее удобную форму диаграмм предложил английский коррозионист Эванс. На этих диаграммах значение потенциала откладывается по ординате, а по оси абсцисс откладывают величины и анодного, и катодного токов, вне зависимости от того, что они имеют противоположенное направление (рис. 4.12).                    При Коррозионные диаграммы позволяют определить тормозящий (контролирующий) фактор процесса коррозии. Это очень важно при выборе метода защиты от коррозии, так как, как правило, наиболее эффективно воздействовать на лимитирующую стадию процесса.   до прохождения тока. , то коррозия протекает с анодным торможением, то коррозия протекает с катодным контролем. Если  — имеет место смешанный контроль.

22)Коррозия металлов в технологических средах. Водородная коррозия. Сернистая коррозия

Согласно классификации, коррозия металлов определяется конкретными особенностями среды и условиями протекания процессов. Обычно выделяют коррозию металлов в природных средах: атмосферную, морскую, подземную, биокоррозию и т.д. Виды коррозии металлов в технических средах более разнообразны.

Крупными    потребителями противокоррозионных лакокрасочных материалов являются нефтегазодобывающая и перерабатывающая, химическая и металлургическая отрасли, причем во многих случаях лакокрасочные покрытия эксплуатируются при высоких температурах. Элементы стальных конструкций, емкостное оборудование, трубопроводы и др. подвергаются атмосферным воздействиям, а также действию температур до 500 0С. Для защиты от высокотемпературной коррозии необходимы специальные, обладающие теплостойкостью и термостойкостью материалы и методы их оценки.

Если современные ЛКМ при правильном подборе могут обеспечивать защиту от атмосферной коррозии в течение 10-20 лет, то при эксплуатации в условиях высоких температур ситуация серьезно осложняется. В покрытиях под действием высоких температур продолжается сшивка, увеличивается ее плотность, что, с одной стороны, способствует улучшению прочности пленки, а с другой — вызывает ее повышенную хрупкость. Кроме того, под действием тепла из пленки удаляются летучие компоненты (пластификаторы, эластифици-рующие смолы и низкомолекулярные компоненты и продукты деструкции), соответственно при этом ухудшаются эластические свойства и адгезия.

Водородная коррозия

Водородная коррозия может сопутствовать многим технологическим процессам, протекающим при повышенных температурах от 200 °С и давлениях от 300 МПа в средах, содержащих водород. Эти условия отвечают таким процессам, как гидрирование угля и нефти, синтез аммиака и метанола и др.

Наблюдаются два вида повреждения металла водородом — водородная хрупкость и водородная коррозия. Часто эти явления накладываются друг на друга. Если в газе присутствует аммиак, то может происходить также и азотирование металла.

При контакте азотно-водородной смеси с металлом в условиях повышенных температур и давления молекулярный водород на поверхности металла диссоциирует. Образовавшийся атомарный водород диффундирует в решетку металла и растворяется в нем. При снижении температуры из-за уменьшения растворимости водород стремится перейти в газообразное состояние внутри металла. В этом случае в металле возникают большие напряжения, приводящие к необратимой хрупкости.

Водородная коррозия является результатом химического взаимодействия водорода с карбидной составляющей стали. Внешне проявление водородной коррозии означает сильное снижение прочности стали без заметного разрушения поверхности. Появление водородной коррозии связывают с несколькими явлениями:

проникновением водорода внутрь стального изделия и образования там хрупкого твердого раствора водорода в железе;

Как показывают экспериментальные данные появлению внешних признаков водородной коррозии предшествует инкубационный период, который в зависимости от условий может продолжаться до 1000 часов.

При температуре выше 300° С на поверхности металла параллельно с реакцией обезуглероживания протекает процесс хемосорб-ции водорода и его распад на атомы. Диаметр атома водорода составляет 0,1 нм, и он обладает большой подвижностью.

про-

исходит не на поверхности, а внутри металла. Развивается высокое внутреннее давление. Па поверхности металла появляются вздутия и трещины.

Термодинамические расчеты показывают, что при температурах 300-600° С и повышенных давлениях водорода происходит почти полное разложение цементита.

является обратимой и идет с уменьшением объема. Поэтому повышение давления сдвигает равновесие этой реакции вправо и снижает температурную границу протекания реакции. В нефтехимических производствах, работающих в восстановительной атмосфере при давлениях до 50МПа рабочую температуру ограничивают до 200 °С.

Скорость водородной коррозии в значительной степени зависит от глубины обезуглероживания стали. На этот процесс оказывают влияние давление водорода, температура и т.д. (рис. 6.9).

Обычными конструкционными материалами в восстановительных средах являются стали 20 и ЗОХМА. Они эксплуатируются до температуры 300 °С. Для изделий, работающих при более высоких температурах, в металл вводят легирующие добавки. В качестве добавок используют элементы, повышающие сопротивляемость стали обезуглероживанию, как то хром, молибден, ванадий. Хром дополнительно препятствует проникновению водорода в металл.

Как видно из рис. 6.10, проникновение водорода в хромистую сталь зависит от температуры газа и содержания хрома в металле.

При содержании в железных сплавах 6 % хрома химическая стойкость сплава при 600 °С и давлении 30 МПа достаточно высокая.

которая входит в виде включений в состав многих медных сплавов:

Образующиеся пары воды создают внутри металла высокое давление, что приводит к возникновению трещин и потере пластичности

Сернистая коррозия

сероводород

меркаптаны или тиоспирты и т.д. являются достаточно агрессивными, коррозионноактивными веществами. Наиболее активным компонентом при высокотемпературной газовой коррозии является сероводород. Он даже более опасен, чем диоксид серы.

является исходным продуктом при производстве серной кислоты. Его получают при обжиге серного колчедана, сжигании серы, из сероводорода при утилизации отходящих газов металлургических производств.

Чугунные детали скребков конверторных печей кипящего слоя, зубья и гребки колчеданных печей, котлы-утилизаторы, сухие электрофильтры, газоходы обжиговых газов в производстве серной кислоты часто выходят из строя вследствие газовой коррозии.

При температуре газа более 400 °С для деталей из чугуна характерно увеличение объема металла, достигающего 10 % от начальной величины. При этом резко снижается прочность материала. Детали испытывают коробление, трескаются и разрушаются. Это явление называется ростом чугуна и объясняется внутренним окислением металла. Максимальный рост чугуна наблюдается при 700 °С.

К ростоустойчивым чугунам относятся высоколегированные хромистые чугуны, карбидный чугун типа пирофераль и чугаль

Рост пленки подчиняется параболическому закону.

Сернистый никель образуется и при действии на металл сероводорода:

Сульфид никеля с металлическим никелем образует легкоплавкую эвтектику с температурой плавления около 625 °С. Образование этой эвтектики в сталях, содержащих никель, происходит преимущественно по границам зерен, вызывая разрушение металла.

Стали с содержанием никеля выше 15 % очень чувствительны к действию сернистого газа. В процессе окисления они теряют механическую прочность. Поэтому при работе с газовой средой, содержащей диоксид серы, при температурах до 400° С используют углеродистые стали, а при более высоких температурах — хромистые стали.

Наиболее употребительны жаростойкие стали — 4Х9СА, Х6СЮ, XI7, ОХ17Т, XI8СЮ, Х25Т. Интенсивное образование окалины происходит при температурах выше 800-1000 °С. К жаропрочным сталям в этой среде относятся Х5М, Х6СМ, Х18Н12Т, Х23Н18. Рабочая температура для этих сплавов 550-600 °С (для Х23Н18 — 1000 °С).

Сухой сернистый газ реагирует с алюминием очень медленно. Поэтому алюминий используют для защиты от коррозии деталей и узлов теплообменников и контактных аппаратов.

Сухой сероводород при комнатной температуре не представляет опасности для обычных углеродистых сталей. С повышением температуры опасность сероводородной коррозии углеродистых сталей значительно увеличивается. При температуре выше 300°С железо подвергается сильной коррозии в серосодержащих газовых средах.

Легирование хромом в количестве > 12 % повышает коррозионную стойкость при температурах до 700-800 °С. При коррозии хромистых сталей образуется окалина, наружный слой которой состоит из сернистого железа. Хром в этом слое практически отсутствует. Весь окисленный хром сосредотачивается во внутреннем слое, который и обладает защитным свойством. Хорошей химической стойкостью в атмосфере сероводорода обладают ферритные сплавы, содержащие 25-30 % хрома.

раз вызывает рост скорости коррозии более чем в 12-15 раз.

и различные оксиды, в том числе и примеси серы. В этих случаях наблюдают сульфидно-оксидную коррозию. Защитная пленка на металле состоит, как правило, из

, то скорость коррозии увеличивается очень быстро. Причины ванадиевой коррозии сталей были разобраны ранее.

Хромистые стали с содержанием 4—6 % Сг считаются полужаростойкими. Стали этого класса вследствие своей доступности, повышенной коррозионной устойчивости и прочности широко применяются в нефтяной промышленности для изготовления крекинг-установок. Жаростойкость этих сталей на воздухе и в топочных газах со значительным содержанием сернистых соединений при температурах 500-600 °С примерно в 3 раза выше жаростойкости нелегированных сталей.

Присадка молибдена (1-1,5) % повышает жаростойкость и жаропрочность стали. Кремний также оказывает положительное влияние на коррозионную стойкость сталей в атмосфере сероводорода.

Алюминий устойчив в газовых средах, содержащих сернистые соединения. Добавка его к железу в количестве не менее 4 % оказывает защитное действие до 800 °С при сероводородной коррозии.

Хромистые стали, дополнительно легированные алюминием и кремнием, а также церием, таллием и кальцием, обладают наибольшей устойчивостью против газовой коррозии в области высоких температур (выше 700 °С) в средах, содержащих сернистые соединения.

не более 0,01 % явления водородной коррозии не наблюдается.

В условиях синтеза аммиака азото-водородо-аммиачная смесь более опасна для стали, чем чистый водород. В этом случае кроме всех видов водородной коррозии может происходить азотирование стали.

В условиях работы колоны синтеза аммиака происходит не только образование аммиака, но частично его диссоциация на поверхности металла с образованием атомарного азота. Последний реагирует с атомами железа или легирующих элементов, образуя нитриды. В результате поверхность стали насыщается азотом и становится хрупкой.

С увеличением содержания хрома в сталях степень воздействия водорода и аммиака уменьшается. При содержании хрома выше 11 % на поверхности стали образуется твердый и плотный нитридный слой, который препятствует диффузии азота вглубь металла. Это подтверждают данные рис. 6.10 и 6.11.

На стали 18ХЗМВ глубина нитридного слоя составляет 3-4 мм и плотность его в 2 раза больше, чем основного металла. На деталях из стали XI8Н10Т глубина нитридного слоя 0,3 мм, но плотность его в 10 раз выше, чем у основного металла.