Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Л/Р № 314.doc
Скачиваний:
19
Добавлен:
12.03.2015
Размер:
221.18 Кб
Скачать

А.Г.Столетов два года исследовал новое явление и установил следующие закономерности внешнего фотоэффекта:

  1. Количество электронов, вырываемых с поверхности металла в секунду, прямо пропорционально интенсивности светового потока Е (количеству энергии падающей со светом за единицу времени на единичную поверхность катода) и не зависит от частоты света.

  2. Для каждого вещества существует определенная для данного вещества минимальная частота 0, при которой еще возможен фотоэффект. Если частота света меньше минимальной частоты, то фотоэффект не происходит (0 называется «красной границей фотоэффекта», так как для многих металлов 0 лежит в области красного света.).

  3. Максимальная начальная скорость вырываемых электронов определяется частотой света и не зависит от интенсивности падающего светового потока.

Объяснить природу фотоэффекта с помощью волновой теории света не удалось. С точки зрения классической электродинамики, свет – поток множества электромагнитных волн, они воздействуют электромагнитными силами на электроны внутри металла, сообщая им дополнительную кинетическую энергию, которую электроны могут потратить на преодоление сил притяжения со стороны кристаллической решетки металла. Так как интенсивность электромагнитного излучения пропорциональна амплитуде волны, то увеличение интенсивности света должно вести к значительному увеличению амплитуды волн и, соответственно, к увеличению сил, действующих на электроны. Такое воздействие должно давать электронам ускорение, рост скорости, энергии и приводить к увеличению возможности выхода электронов из металла.

Для света с очень маленькой интенсивностью фотоэффект не должен был бы наблюдаться сразу, так как, чтобы раскачать электрон и накопить энергию, волне нужно было бы затратить время порядка секунды, однако в экспериментах фотоэлектроны появляются немедленно после освещения металла. Это противоречие, т.е. безынерционность фотоэффекта объяснить волновой теорией не удалось.

Кроме этого, энергия вырванного электрона и его скорость должны зависеть по волновой теории только от амплитуды колебаний в волне, а не от его частоты. Поэтому объяснить третий закон фотоэффекта с помощью волновой теории также не удалось. Необъяснимым оставалось также, почему фототок возникал лишь тогда, когда частота падающего света превышала строго определённую для каждого металла величину.

Только в 1905 г. Эйнштейн раскрыл сущность фотоэффекта, за что получил Нобелевскую премию. Он предположил, что электромагнитное излучение не просто испускается порциями - оно и распространяется в пространстве, и поглощается веществом тоже в виде порций - световых квантов (элементарных частиц - фотонов). Энергия фотона  связана с частотой электромагнитного излучения  соотношением, предложенным ранее Планком,  = h  (h-постоянная Планка).

Согласно Эйнштейну, фотон, после его поглощения металлом, pасходует свою энеpгию на пpеодоление потенциального баpьеpа (эта часть энеpгии называется pаботой выхода электpона из металла А), а оставшуюся после этого энергию (если останется) на сообщение электpону вне металла кинетической энеpгии. Отсюда следует, что для возникновения фотоэффекта не важна интенсивность падающего светового пучка, главное, хватает ли отдельному световому кванту энергии, чтобы выбить электрон из вещества. Минимальная энергия необходимая для этого равна работе выхода. Необходимость затрат энергии на выход электронов из металла (работу выхода А)объяснятся также как и в классической теории: на вышедший электрон действует сила притяжения со стороны положительно заряженной области металла, из которой вышел электрон, и сила отталкивания со стороны электронного облака над металлом, созданного, ранее вышедшими, электронами. Если электрон освобождается светом не у самой поверхности, а на глубине, то часть энергии фотона может быть потеряна также вследствие случайных столкновений в веществе. Энергия электрона (и его скорость) будет максимальной, если потери равны нулю.

Работа выхода зависит от химической природы металла и со­стояния его поверхности (загрязнение, следы влаги изменяют ее величину). Из табл. 1 видно, что работа выхода чистых металлов колеблется в пределах не­скольких электрон-вольт.

Таблица 1.

Металл

Сs

Ва

Zr

Zn

Мо

W

Ni

Работа выхода, эВ

1,81

2,11

4,12

3,74

4,15

4,50

5,03

Закон сохpанения энергии позволяет написать пpостое соотношение, связывающее скоpость фотоэлектpонов с частотой поглощаемого света:

hv=А+Ek,

где hv - энергия, которую отдаёт фотон электрону вещества, А- работа выхода электрона из вещества, Ek = mv2/2 - кинетическая энергия освобождённого электрона. Это уравнение называется уравнением Эйнштейна для внешнего фотоэффекта. Теория Эйнштейна объясняет все законы Столетова.

Первый закон следует из того, что интенсивность света пропорциональна числу фотонов падающих за единицу времени на единичную поверхность, а каждый фотон вырывает примерно один электрон. Поэтому увеличение числа фотонов вызывает возрастание числа испущенных в единицу времени электронов. При этом в эксперименте с фотоэлементом, сила фототока пропорциональна интенсивности поглощённого света, то есть числу фотонов, способных выбить электроны из вещества.

Также становится ясно, что фотоэффект могут вызывать только фотоны соответствующие свету достаточно высокой частоты. Если h < A, то энергии фотона не хватит на вырывание электронов и они из поверхности металла не испускаются. Это означает, что фотоэффект будет происходить только при h > A, т.е. существует некоторая минимальная частота 0 = A/h, при которой начинается это явление (или граничная частота фотоэффекта).

Из формулы Эйнштейна следует также третий закон Столетова, так как видно что, максимальная начальная скорость электронов зависит только от частоты  и материала катода (А). Увеличение интенсивности света вызывает лишь возрастание числа испущенных в единицу времени электронов, но не влияет на их энергию.

Приборы, в основе принципа действия которых лежит явление фотоэффекта, называют фотоэлементами. Они применяется в фотометрии для измерения силы света, яркости, освещенности, в кино для воспроизведения звука, в фототелеграфах и фототелефонах, в управлении производственными процессами. Фотоэлемент - это откачанный стеклянный баллон, на часть внутренней поверхности которого нане­сен слой щелочного металла. Этот слой служит катодом фотоэлемента. Осталь­ная часть поверхности является окошком для падающего света. Внутри баллона имеется второй электрод - анод фотоэлемента (рис.4).

Рис.4. Схема устройства фотоэлемента.

При освещении катода светом вышедшие из него фотоэлектроны под дейст­вием электрического поля движутся к аноду, создавая фототок. Сила фототока за­висит как от длины волны А падающего света, (такая зависимость называется спектральной характеристикой фотоэлемента), так и от приложенного на­пряжения. Зависимость силы фототока от приложенного к фотоэлементу напря­жения при постоянной длине волны и постоянном световом потоке называется вольтамперной характеристикой фо­тоэлемента. Она во многом сходна с вольтамперной характеристикой обыч­ной двухэлектродной лампы (см. Рис.3).

До сих пор мы рассматривали случай, когда электрон получает энергию только от одного фотона. Такие процессы называются однофотонными. С изобретением лазеров были получены недостижимые ранее мощности световых пучков. Это дало возможность осуществить многофотонный фотоэффект, в ходе которого электрон, вылетающий из металла, получает энергию не от одного, а от N фотонов (N=2, 3, 4, 5, 6). Формула Эйнштейна в случае многофотонного фотоэффекта имеет вид:

Nhv=А+Ek.

Соответственно 0 = A/hN и красная граница фотоэффекта смещается в сторону более коротких частот.

Существует также внутренний фотоэффект – это вызываемые электромагнитным излучением переходы электронов внутри полупроводника или диэлектрика из связанных состояний в свободные без вылета наружу. В результате этого концентрация свободных носителей тока внутри тела увеличивается, что приводит к повышению электропроводности. На основе данного явления конструируются полупроводниковые фотоэлементы. Они используются при автоматическом управлении электрическими цепями (например, в турникетах метро), в цепях переменного тока, в качестве источников тока в часах, микрокалькуляторах, в солнечных батареях на искусственных спутниках Земли, межпланетных и орбитальных автоматических станциях. С явлением фотоэффекта связаны фотохимические процессы, протекающие под действием света в фотографических материалах.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]