
VLE 2 Optical Instruments I
.pdf
Mirror telescope
Eye
Eye-
piece Intermedia te image
Astronomy: mirror telescopes
Concave mirrors can be manufactured in bigger diameters → more light
Diameter up to 10 m
Virtual image in infinite distance
source: Demtröder, Experimentalphysik 2
21
Prof. M. Schmidt
Institute of Photonic Technologies, Univ. Erlangen, Germany

Modern telescope (1)
source: http://de.wikipedia.org/wiki/Large_Binocular_Telescope
source: http://de.wikipedia.org/wiki/Gran_Telescopio_Canarias
Top:
Large Binocular Telescope (LBT) with two 8.4 m diameter mirrors built on top of Mount Graham (Arizona), 3267 m over sea-level
Left:
Gran Telescopio Canarias (GTC) built on top of Roque de los Muchachos (Kanaren) with 10.4 m mirrors
22
Prof. M. Schmidt
Institute of Photonic Technologies, Univ. Erlangen, Germany

Modern telescope (2)
Paranal-Observatorium with the Very Large Telescope (VLT) in Chile 2635 m over sea level. It consists of 4 telescopes with mirror diameters of 8.2 m which can be linked together
source: http://de.wikipedia.org/wiki/Very_Large_Telescope
Hubble Space Telescope with a mirror diameter of 2.4 m.
source: http://de.wikipedia.org/wiki/Hubble-Weltraumteleskop
23
Prof. M. Schmidt
Institute of Photonic Technologies, Univ. Erlangen, Germany

4. Projector
24
Prof. M. Schmidt
Institute of Photonic Technologies, Univ. Erlangen, Germany

Basic principle, diascope
Lamp Diapositiv
|
|
|
|
|
|
Screen |
Mirror |
|
|
|
|
||
|
Condenser |
|
|
|||
|
|
Objective |
||||
|
|
|
|
|||
|
|
source: Eichler, Physikalisches Grundpraktikum |
||||
|
|
|
|
|
||
|
|
|
|
|
||
|
|
|
|
|
Projector: Image of a transparent objective (diapositiv) with a projection objective. The image is highly magnified on the screen
Combined illumination and imaging light path
Homogenous illumination: Image of the lamp by the condenser in the objective
Generation of a real inverted (flipped) image.
source: http://leifi.physik.uni-muenchen.de/web_ph09 /zusatzaufgaben/12linsen/projektor/projektor.htm
25
Prof. M. Schmidt
Institute of Photonic Technologies, Univ. Erlangen, Germany

Projector: DLP-Projektor
Colour wheel:
Function
DMD
|
source: www.cine4home.de |
|
source: http://focus.ti.com/pdfs/dlpdmd/DMD-101.pdf |
|
DLP-Projektor: Image of a reflectiong object (Digital-Light- |
|
Processorbzw. Digital-Micromirror-Device-Chip) on the |
|
screen |
|
Similar optical path as in previous projector |
|
DLP: contains DMD and controls DMD. function: bi |
|
stable tilt of 2 Mio. Mirrors with 20…30 KHz |
|
→ intensity control |
source: www.heise.de |
Colour wheel: about 200 Hz spinning frequency, for |
|
generation of a colour image; synchronize with DLP- |
|
chip |
|
26 |
|
Prof. M. Schmidt |
|
Institute of Photonic Technologies, Univ. Erlangen, Germany |
|
|

Projector: LCD-projector
LCD-projector: Image from three LCD‘s (Liquid Crystal Display) on the screen
Splitting of the light in red /green/blue with dichroitic mirrors
For all three colours: similar optical path as previous setups
Instead of slide→ LCD controllable transmissive b/w display
Mixing of the three colours with a prism
source: www.nitto-optical.co.jp
Advantage: no moving parts, for mixing colours with fast motions like the DLP
Disadvantage: complex setup, with longer usage the different colour images shift to each other
27
Prof. M. Schmidt
Institute of Photonic Technologies, Univ. Erlangen, Germany

5. Camera
28
Prof. M. Schmidt
Institute of Photonic Technologies, Univ. Erlangen, Germany

Pinhole camera
source: http://de.wikipedia.org/wiki/Lochkamera
29
Prof. M. Schmidt
Institute of Photonic Technologies, Univ. Erlangen, Germany

Basic principle
Transparent screen
source: Demtröder, Experimentalphysik 2
Image: P → elliptical disc around P‘
Image the more sharp the smaller d
No focussing –> usage of a low amount of light rays
Problem: intensity und diffraction limited
30
Prof. M. Schmidt
Institute of Photonic Technologies, Univ. Erlangen, Germany