Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

VLE 2 Optical Instruments I

.pdf
Скачиваний:
7
Добавлен:
12.03.2015
Размер:
4.74 Mб
Скачать

Myopia

Myopia:

Focal length of the eye lens too small, eye muscle cannot expand lens enough

image of for distance objects is in

front of the retina

source: http://de.wikipedia.org/wiki/Kurzsichtigkeit (11.01.09)

Myopia and its correction with a defocussing

Correction by a defocussing lens

 

lens.

11

Prof. M. Schmidt

Institute of Photonic Technologies, Univ. Erlangen, Germany

Hyperopia

Hyperopia :

Eye lens cannot get the necessary curve-radius image of close object behind the retina

Correction by focussing lens

source: http://de.wikipedia.org/wiki/Kurzsichtigkeit (11.01.09)

Hyperopia and its correction with a focussing lens.

12

Prof. M. Schmidt

Institute of Photonic Technologies, Univ. Erlangen, Germany

Optical spare representation

Spare lens

Focal length of the eye caused by:

Eye lens

Cornea

Aqueous fluid

Vitreous

source: Demtröder, Experimentalphysik 2

Spare representation of the eye with a lens with a focal length on the object side of f1 and on the image side f2 (outer boundary air, inner boundary vitreous).

13

Prof. M. Schmidt

Institute of Photonic Technologies, Univ. Erlangen, Germany

Spatial resolution and sensitivity of the eye

Eye lens

retina

source: Demtröder, Experimentalphysik 2

The closer an object is to the eye, the bigger it appears. This means the visual angle ε is bigger:

tan 2 12 Gs Gs

That the object with the distance g is imaged sharp onto the retina,

f1

 

f2

1

the lens equation has to be fulfilled.

g

 

b

 

The distance b of the retina is constant Adaption be changing of the focal length of the eye lens

Minimal distance smin = 10 cm

Clear distance s0 = 25 cm

14

Prof. M. Schmidt

Institute of Photonic Technologies, Univ. Erlangen, Germany

2. Magnifying glass

15

Prof. M. Schmidt

Institute of Photonic Technologies, Univ. Erlangen, Germany

Magnifying glass

source: http://de.wikipedia.org/wiki/Lupe

Image

 

 

 

 

Retina

 

 

Eye lens

Magnifying glass

 

 

 

 

 

 

 

 

 

 

 

 

source: Demtröder, Experimentalphysik 2

Aim of magnifying optical instruments is to increase the visual angle ε without going below the clear vision distance

anugular magnification V

visual angle with instrument

visual angle 0 without instrument

 

The simplest magnifying optical instrument is the magnifying glass.

A magnifying glass is a focussing lens with a small focal length which is placed between eye and object in a way that the object is in the focal plane of the magnifying glass.

16

Prof. M. Schmidt

Institute of Photonic Technologies, Univ. Erlangen, Germany

Basic principle

Virtual image

Magnifying glass Eye

source: Demtröder, Experimentalphysik 2

The magnification of a magnifying glass is the ratio of the clear visual distance s0 (= 25 cm) and the focal lens f of the magnifying glass.

Magnification of a

Vergrößerung Lupe :

magnifying glass:

B

VL b

0 G s0

with GB bg VL sg0

for g f VL sf0

17

Prof. M. Schmidt

Institute of Photonic Technologies, Univ. Erlangen, Germany

3. Telescope

18

Prof. M. Schmidt

Institute of Photonic Technologies, Univ. Erlangen, Germany

Basic principle

From far distance objects

Eye

Source: Demtröder, Experimentalphysik 2

V

 

 

 

B

 

f1 0

 

f1

0

 

 

f2

F

 

 

f2 0

f2 0

A telescope is built for magnifying objects in a far distance. A lens L1 (objective) with high focal length generates an intermediate image, which is imaged with a second lens (eye-piece). The eye-piece acts as magnifying glass. The magnification of the telescope is equal to the ratio of the focal length of objective and eye-piece.

19

Prof. M. Schmidt

Institute of Photonic Technologies, Univ. Erlangen, Germany

Keplerian telescope and Galileo's telescope

 

 

 

 

 

Keplerian Telescope

 

 

 

 

 

L2 convex (f2>0)

 

 

 

 

Eye

source: Wikipedia

 

 

 

 

 

 

 

 

 

Johannes Kepler (1571-1630)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Galileo's telescope

L2 concave (f2<0)

Eye

source: Wikipedia

Galileo Galilei (1564-1642)

source: Demtröder, Experimentalphysik 2

20

Prof. M. Schmidt

Institute of Photonic Technologies, Univ. Erlangen, Germany