Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
. ЭлЕКТРОника..doc
Скачиваний:
289
Добавлен:
12.03.2015
Размер:
8.04 Mб
Скачать

2.2.1. Схема и принцип действия понижающего исн

Стабилизатор напряжения, регулирующее устройство (РУ) которого работает в импульсном режиме, называется импульсным стабилизатором напряжения.

В общем случае принцип действия импульсного стабилизатора напряже-ния можно свести к следующему. Если идеальный ключ SA в электрической цепи на рис.83,а периодически замыкать и размыкать, то напряжение постоянного тока (рис.83,б) будет преобразовано на сопротивлении нагрузки Rн в последовательность периодических однополярных импульсов. Форма напряжения на нагрузке Uн в виде прямоугольников приведена на рис. 83, в.

Среднее значение напряжения Uн.ср (в дальнейшем Uн.) на нагрузке находится известной формулой

а б в

Рис. 83

.

Вместо ключа SA на практике обычно используются РУ - мощные полевые, МДП-транзисторы, биполярные транзисторы, транзисторы типа IGBT, работающие в импульсном режиме. Работа регулирующего транзистора в режиме ключа дает возможность получить с его выхода однополярные импульсы прямоугольной формы. На рис. 83, в обозначено: tи – время импульса или время замкнутого состояния ключа, а в реальных схемах это время открытого состояния транзистора; tп – время паузы или время разомкнутого состояния ключа, а в реальных схемах это время закрытого состояния транзистора; T – период работы ключа.

Таким образом, среднее значение напряжения на нагрузке связано с напряжением первичного источника следующем соотношением

UН = (tи / T) Uп = КЗ Uп,

где КЗ = tи / T – коэффициент заполнения импульсов или относительное время замкнутого состояния ключа. Так как период T связан с частотой переключения f формулой T = 1/ f, то можно представить коэффициент заполнения импульсов в виде КЗ = tи f и, следовательно,

UН = tи f Uп.

В схемах импульсных стабилизаторов напряжения на практике на выходе ключа устанавливают сглаживающие LC фильтры.

Схема импульсного стабилизатора напряжения состоит из силовой части (силового контура) и системы управления. Силовые части ИСН, соответственно на полевом и биполярном транзисторах, (рис. 84,а,б) включают в себя: VT1–регулирующий транзистор; VD1 – блокирующий диод; L1 и C2 – индуктивность дросселя и емкость конденсатора Г-образного пассивного сглаживающего фильтра. Регулирующий транзистор управляется импульсами Uсу, вырабатываемыми системой управления (СУ), подключенной параллельно сопротивлению Rн. На вход силовой части ИСН подается напряжение питания Uп, а с нагрузки Rн – снимается напряжение Uн.

Рис. 84

Рис. 85

На рис. 85 показаны временные диаграммы, пояс-няяющие работу силовой части стабилизатора «по-нижающего» ИСН.

В схемах на рис. 84,а,б, чаще всего используемых на практике, РУ и дроссель L1 включены последовательно относительно нагрузки.

В момент, когда 1 открывается импульсом дли-тельности , на вход фильтра подается напряжение (если прене-бречь потерями в транзис-торе при его насыщении , то ) и через дроссель начинает протекать нарастающий ток . Так как здесь рассматривается уста-новившийся режим (после большого числа открытого и закрытого состояний 1), то к 1 прикладывается напряжение , равное разности между и напряжением на конденса-торе , при этом диод 1 оказывается закрытым под действием обратного напря-жения, равного по величине . Конденсатор C2 сначала продолжает разряжаться на сопротивление нагрузки при , а затем начинает заряжаться при . В момент за-пирания (рис. 84) транзисто-ра ток, протекавший через L1, достигает некоторого максимального значения , которому соответствует запасенная в магнитном поле дросселя энергия . Ток в дросселе не может мгновенно снизиться до нуля [5,12].

В интервале паузы , когда транзистор закрыт, магнитный поток, сцепленный с витками обмотки дросселя, снижается до нуля и в обмотке индуктируется эдс , противодействующая уменьшению мдс. Полярность этой эдс противоположна полярной эдс дросселя в интервале , когда транзистор был открыт. Под действием эдс открывается диод VT1, и энергия дросселя начинает поступать в нагрузку, поэтому ток дросселя снижается до некоторого минимального значения , соответствующего моменту времени, когда VT1 снова откроется, и т.д. В этом же интервале , конденсатор C2 сначала продолжает заряжаться при , а затем уже разряжается при . Если при этом ток, протекающий через L1, не снижается до нуля (т.е. ), то режим работы силовой цепи ИСН называется режимом непрерывного тока дросселя. Если в течение паузы ток , то этот случай работы ИСН именуется режимом прерывистого тока дросселя. Режим непрерывного тока дросселя получается тогда, когда величина индуктивности L1 дросселя выбирается больше критической , которая соответствует нулевому значению тока в обмотке дросселя в момент, предшествующий открыванию транзистора.

В рассматриваемой схеме среднее значение выходного напряжения будет всегда меньше среднего значения входного напряжения (в схеме ИСН без потерь ). Импульсные стабилизаторы постоянного напряжения, у которых , называются понижающими.

Выходное напряжение такого ИСН определяется соотношением (без учета потерь силовой части ИСН):

,

где – коэффициент заполнения импульсов; – период коммутации, – время импульса, когда регулирующий транзистор открыт, – соответственно время паузы, когда VT1 закрыт.

Ток через катушку за время возрастает со скоростью:

где - напряжение насыщения коллектор-эмиттер транзистора VT1. В течении времени ток в катушке L1 достигает максимального (пикового) значения:

где – амплитуда пульсации тока дросселя, а также отклонения от средних токов и ; - частота коммутации.

Диод во время закрыт напряжением на эмиттере транзистора.

Если учесть, что напряжение на входе ИСН изменяется, то наибольшее изменение тока через дроссель будет равно:

Это и все сказанное далее справедливо для установившегося режима, и не учитывает наличие конденсатора , а он потребляет дополнительный (помимо нагрузки ) ток до тех пор, пока ток через катушку .

Когда же транзистор с помощью UСУ закрывается, убывающее магнитное поле катушки вследствие самоиндукции изменяет полярность напряжения на ее выводах и она во время становится источником питания нагрузки. Создаваемый ею ток замыкается через открывшийся диод , нагрузку и конденсатор и уменьшается со скоростью:

теперь напряжение на выводах катушки . Все время, пока , ток течет через нагрузку и заряжает конденсатор , после чего конденсатор сам начинает питать нагрузку. Ток спадает по линейному закону вплоть до момента очередного открывания транзистора . После этого весь цикл повторяется.

Среднее значение тока нагрузки , среднее значение тока во время , среднее значение тока замыкающего диода за время не зависят от , при безразрывном токе дросселя и будут равны:

Индуктивность накопительной катушки рассчитывают исходя из того, что она должна обеспечивать непрерывный выходной ток в течении времени , когда транзистор VT1 закрыт. Чтобы ток дросселя при закрытом транзисторе не падал до нуля, индуктивность дросселя должна быть выше некоторой критической величины . Последнюю можно найти из неравенства:

Только при запас энергии, накопленной дросселем при заряде, достаточен для подпитки нагрузки в течение всей части периода.

Требуемые напряжение и ток нагрузки устанавливают соответствую-щим выбором отношения , которые рассчитывают по формуле:

.

Емкость конденсатора определяют из выражения:

где - допустимая амплитуда пульсации выходного напряжения.

Коэффициент полезного действия ИСН является функцией частоты коммутации, и с увеличением последней уменьшается, поскольку с увеличением в ИСН возрастают коммутационные потери мощности в транзисторе и диоде силовой части. При высоких частотах (более 20 кГц) необходимо учитывать также потери мощности в , [5]. Несмотря на это, КПД ИСН при прочих равных условиях значительно выше, чем в непрерывном стабилизаторе напряжения.

В общем случае ИСН имеет внутреннее (выходное) сопротивление r, которое ранее не учитывалось, зависящее от сопротивления насыщенного транзистора и открытого разрядного диода , сопротивление катушки дросселя и внутреннего сопротивления первичного источника питания r. При анализе ИСН считают, что . В этом случае и равными оказываются постоянные времени зарядки и разрядки цепей дросселя. Такой подход упрощает получение выражения для семейства выходных и регулировочных характеристик силовой части ИСН, которое имеет вид:

.

При заданных и можно определить условие реализуемости стабилизатора:

при котором возможно осуществить схему силовой части ИСН.

Выражение для выходной и регулировочной характеристики удобнее записать в следующем виде:

рис. 86

Семейство выходных (зависимость ) характеристик строится при различных значениях от 0 до 1. Выходное сопротивление такого источника равно r при любом значении .

Семейство регулировочных (зависимость ) характеристик строится при различных значениях .

Построив семейство выход-ных и регулировочных характе-ристик (рис. 86), можно определить диапазон изменения длительности относительной паузы , необхо-димой для сохранения неизменным выходного напряжения при колебаниях как входного (от до ) напряжения, так и тока нагрузки (от до ) [5].