- •Лекция № 1 Предмет и содержание курса «охт»
- •Анализ эффективности проведения хтп
- •Лекция № 2 Химико-технологическая система, ее состав и структура
- •Основные принципы системного подхода
- •Состав хтс
- •Структура хтс
- •Лекция № 3 Основные этапы создания хтс
- •Формы представления хтс (классификация моделей)
- •Классификация технологических схем
- •Лекция № 4 Сырье в химической промышленности
- •Классификация сырья
- •Сырье для промышленности органического синтеза
- •Углеводородные газы
- •Сырье для промышленности неорганического синтеза
- •Выбор и обоснование сырьевой базы
- •Лекция № 5 Закономерности управления химико-технологическими процессами
- •Технологическая классификация химических процессов (модели реакций)
- •Закономерности управления простым необратимым гомогенным процессом
- •Лекция № 6 Закономерности управления простым необратимым гетерогенным процессом
- •Методы интенсификации гетерогенного процесса, протекающего в диффузионной области
- •Процессы массопередачи в гомогенных средах
- •Лекция № 7 Закономерности управления простым обратимым гомогенным процессом
- •Лекция № 8 Закономерности управления сложными процессами
- •Лекция № 9 Закономерности управления каталитическими процессами
- •Основные стадии и кинетические особенности гетерогенно-каталитических процессов
- •Требования к гетерогенным катализаторам:
- •Химические свойства катализатора
- •Физические свойства катализатора
- •Лекция № 11 Теория химического реактора
- •Классификация химических реакторов
- •Материальный баланс реактора
- •Лекция № 12 Гидродинамические модели реакторов. Вывод характеристических уравнений.
- •Реактор идеального вытеснения непрерывного действия
- •Сравнение рис и рив
- •Каскад реакторов идеального смешения непрерывного действия
- •Гидродинамические режимы в реальных реакторах
- •Распределение времени пребывания в проточных реакторах
- •Лекция № 14 Теплоперенос в химических реакторах
- •Уравнение теплового баланса реактора
- •1.Политропический режим
- •2. Адиабатический режим
- •3.Изотермический режим
Лекция № 1 Предмет и содержание курса «охт»
Слово «технология» греческого происхождения и имеет дословный перевод «наука о мастерстве». С современной точки зрения мы можем определить технологию как науку, изучающую способы и процессы массовой переработки сырья в продукты потребления с максимальным экономическим эффектом.
Технологии бывают механические и химические. Механическая технология изучает процессы, связанные с изменением формы и физических свойств перерабатываемого сырья главным образом, путем механических операций. Например, изготовление изделий из древесины – деревообрабатывающие технологии, изготовление изделий из металла – машиностроение и т.д. Химическая технология изучает процессы, связанные с изменением состава и химических свойств перерабатываемого сырья за счет протекания химических реакций.
Существует великое множество частных химических технологий, которые можно объединить в две большие группы:
химические технологии | |
неорганические |
органические |
1) основной неорганический синтез – производство кислот щелочей, солей и минеральных удобрений; 2) тонкий неорганический синтез – производство препаратов, реактивов, лекарственных препаратов, редких металлов и т.д.; 3) металлургия – производство черных и цветных металлов; 4) силикатные производства – производство вяжущих веществ, керамики и стекла; 5)ядерно-химическая технология. |
1) основной органический синтез – крупнотоннажное производство органичес-ких продуктов; 2) тонкий органический синтез – производство реактивов, лекарств, средств защиты растений и т.д.; 3) переработка нефти и газов; 4) нефтехимический синтез – производство органических продуктов на основе углеводородного сырья; 5) переработка растительного и животного сырья; 6) высокомолекулярные технологии – производство синтетического каучука, пластмасс, химических волокон и других высокомолекулярных соединений; 7) биотехнологии – производство кормовых дрожжей, ами-нокислот, ферментов, антибиотиков и т.д. |
При разработке любой частной технологии нужно знать три общеинженерные дисциплины: общую химическую технологию (ОХТ), процессы и аппараты химической технологии (ПАХТ) и промышленную теплотехнику (ПТ), которые вместе составляют основу промышленной химии.
-
частные химические технологии
Промышленная химия
ОХТ
ПАХТ
ПТ
Общая химическая технология – наука, изучающая теоретические основы разработки технологий для различных классов химических реакций.
Предмет изучения ОХТ – закономерности, лежащие в основе функционирования химического производства.
Задачи ОХТ как науки:
1) отыскание общих закономерностей протекания химико-технологических процессов;
2) на основе знания общих закономерностей нахождение оптимальных условий ведения химико-технологических процессов;
3) изучение химических превращений с учетом массо- и теплообменных процессов;
4) повышение эффективности использования сырья, энергии, снижение количества отходов и выбросов в окружающую среду; повышение качества выпускаемой продукции.
Методы ОХТ:
- экспериментальный;
- моделирование.
Основные понятия химической технологии
Химическое производство – совокупность процессов и операций, осуществляемых в машинах и аппаратах и предназначенных для переработки сырья путем химических превращений в необходимый продукт.
Химико-технологический процесс (ХТП) – часть химического производства, состоящая из трех основных стадий:
Целевой продукт – продукт, ради которого организован данный ХТП. Все остальные продукты называют побочными. Побочные продукты могут получаться как в целевой, так и в побочных реакциях. Если побочный продукт не находит применения, его называют отбросом; если он используется, то его называют отходом или вторичным сырьем. Если целевой продукт используется в качестве исходного материала в другом производстве, то он называется полупродуктом.
Исходный материал, поступающий на переработку и обладающий стоимостью, называют сырьем. Вещество, принимающее непосредственное участие в целевой химической реакции, называется реагентом. Реагент – это главный, но не единственный компонент сырья. Все компоненты сырья, которые не участвуют в целевой реакции, называют, обычно, примесями.
В технологии часто пользуются понятиями «превращенный» и «непревращенный» реагент. Превращенный реагент – это то количество реагента, которое вступило в реакции (как целевые, так и побочные). Непревращенный реагент – это то количество реагента, которое выходит из реактора в непревращенном, первоначальном состоянии. Сумма масс превращенного и непревращенного реагента равна массе поданного в реактор реагента.
Вспомогательные материалы – химические вещества, которые обеспечивают нормальное протекание ХТП (катализаторы, растворители и др.).
Исходная смесь – смесь веществ, поступающих в реактор, на стадию химического превращения. Реакционная смесь – смесь веществ, находящихся в реакторе или выгружаемых из него. Ее состав меняется в процессе реакции. Мы можем говорить о составе реакционной смеси в определенный момент времени от начала реакции.
Пример:
4NH3 + 5O2 → 4NO + 6H2O
4NH3 + 3O2 → 2N2 + 6H2O
4NH3 + 4O2 → 2N2O + 6H2O
Первая реакция является целевой, две другие – побочные. Оксид азота (II) – NO –целевой продукт на стадии окисления аммиака и полупродукт в производстве азотной кислоты. Вода, азот и оксид азота (I) – побочные продукты. Реагентами в этом процессе являются аммиак и кислород; сырьем – аммиак, содержащий некоторое количество примесей, и воздух, в котором примесями являются азот и другие газы. Вспомогательным материалом является платина, используемая в процессе в качестве селективного катализатора, ускоряющего только первую реакцию. Исходная смесь представляет собой аммиачно-воздушную смесь с содержанием аммиака 9,5 – 11,5 % об. Реакционная смесь – нитрозные газы, содержащие NO, N2O, N2, пары H2O, а также непревращенные О2 и NН3.