
- •Устройства приема и обработки сигналов
- •Введение
- •I. Классификация радиоприемных устройств
- •Супергетеродинные приемники
- •II. Основные характеристики радиоприемников
- •1. Чувствительность.
- •2. Избирательность.
- •3. Динамический диапазон.
- •Шумы колебательного контура
- •Шумы антенны
- •Шумы активных элементов
- •Коэффициент шума
- •Использование коэффициента шума
- •Коэффициент шума каскадного соединения 4-полюсника
- •Влияние антенного фидера на общий коэффициент шума
- •IV. Входные цепи
- •Входные устройства, работающие на настроенные антенно-фидерные системы
- •Автотрансформаторное входное устройство
- •Двойная автотрансформаторная схема входного устройства
- •Входное устройство с последовательным включением индуктивности
- •Трансформаторное входное устройство
- •Особенности входных цепей различных частотных диапазонов
- •Входные цепи на коаксиальных линиях
- •Входные цепи на полосковых линиях
- •Входные цепи на объемных резонаторах
- •Входные устройства приемников декаметровых и более длинных волн
- •Трансформаторное входное устройство
- •Входное устройство с емкостной связью между контуром и антенной
- •Входная цепь с ферритовой антенной
- •Борьба с приемом помех на промежуточной частоте
- •V. Усилители радиочастоты
- •Основные требования и качественные показатели
- •1. Резонансный коэффициент усиления по напряжению
- •Резонансный усилительный каскад умеренно высоких частот
- •Устойчивость резонансного каскада
- •Методы повышения устойчивости резонансных каскадов
- •Транзисторные малошумяшие усилители диапазона свч
- •Регенеративные малошумящие усилители диапазона свч
- •Шумовые свойства регенеративных усилителей
- •Полупроводниковые параметрические усилители
- •Усилители на туннельных диодах (утд)
- •VI. Усилители промежуточной частоты (полосовые усилители)
- •Усилители с одноконтурными каскадами, настроенными на одну частоту
- •Усилители с двухконтурным фильтром
- •Усилители с фильтром сосредоточенной селекции
- •VII. Преобразователи частоты
- •1.1. Основные качественные показатели преобразователей
- •7.2 Общая теория преобразователей частоты
- •7.3. Преобразователи частоты на полевых и биполярных транзисторах
- •7.4 Диодные преобразователи частоты
- •7.5 Балансные преобразователи частоты
- •7.6 Кольцевые преобразователи
- •7.7 Преобразователи без зеркального канала
- •VIII. Детекторы радиосигналов
- •8.1 Классификация детекторов
- •8.2 Амплитудные детекторы
- •8.3 Синхронные детекторы
- •8.4 Диодные детекторы
- •8.5 Амплитудные детекторы в режиме детектирования сильных сигналов
- •8.6 Искажения сигнала при детектировании
- •8.7 Особенности ад на биполярных транзисторах
- •8.8 Импульсный детектор
- •8.9 Фазовые детекторы
- •8.9.1 Фазовые детекторы коммуникационного типа
- •8.9.2 Фазовые детекторы перемножительного типа
- •8.10 Частотные детекторы
- •8.10.1 Частотные детекторы с амплитудным преобразованием
- •8.10.2 Частотные детекторы с фазовым преобразованием
- •8.11 Детекторная характеристика чд на линиях задержки
- •8.12 Дробный частотный детектор
- •8.13 Частотные детекторы с преобразованием частотной модуляции
- •IX. Ограничители амплитуды сигналов
- •9.1 Транзисторные ограничители амплитуды сигналов
- •9.2 Диодные ограничители амплитуды сигналов
- •X. Регулироки в радиоприемниках
- •10.1 Назначение и виды регулировок
- •10.2 Автоматическая регулировка усиления (ару)
- •10.2.1 Обратная система ару
- •10.3 Переходные процессы при автоматической
- •10.4 Автоматическая подстройка частоты (апч)
- •10.4.1 Принципы апч. Разновидности системы апч
- •4.4.2 Системы апч при импульсных сигналах
- •10.4.3 Элементы системы апч
- •10.4.4 Регулировочные характеристики
- •10.4.5 Переходные процессы в системах апч
- •XI.Помехоусойчивость приемника и оптимальные методы приема. Особенности приемников различного назначения.
- •11.1 Помехоустойчивость чм-приема при гармонической помехи
- •11.2 Помехозащищенность при флуктуационной помехе
- •11.3 Радиоприем одной боковой полосы частот
- •11.4 Радиоприемники синхронного приема
- •XII. Расчет и проектирование нелинейных каскадов.
- •12.1. Транзисторный преобразователь частоты для диапазона умерено высоких частот.
- •12.2. Диодный балансный смеситель свч диапазона
- •12.3. Расчет детектора радиоимпульсов
- •XIII. Методические указания к выполнению курсовой работы
- •13.1. Цели и задачи курсовой работы.
- •Содержание и объем курсовой работы
- •Требования к оформлению отчета
- •13.2 Последовательность расчета радиоприемного устройства
- •13.3. Анализ задания и подбор литературы
- •13.4. Расчет структурной схемы
- •Рекомендованная литература
Шумовые свойства регенеративных усилителей
Примем в первом приближении, что основным источником внутренних шумов являются тепловые шумы сопротивления потерь rs регенерирующего элемента. Это справедливо для параметрических и квантовых парамагнитных усилителей, в которых дробовые шумы практически отсутствуют.
Коэффициент шума можно определить по следующей формуле
. (5.29)
При
стандартной температуре (К)
номинальные шумы источника сигнала
можно представить
.
Для
проходного регенеративного усилителя
собственные шумы согласно эквивалентной
схеме, обусловлены тепловыми шумами
сопротивлений
и
(указанные
источники шумов имеют эквивалентные
шумовые температуры
и
соответственно).
С учетом этого квадрат ЭДС шумов можно
представить как
. (5.30)
Мощность собственных шумов усилителя при этом определяется следующим образом
. (5.31)
Подставляя эти выражения в формулу для коэффициента шума, получим
(5.32)
Эквивалентная шумовая температура проходного усилителя
(5.33)
Из
последнего выражения следует, что в
проходном усилителе шумы нагрузки
регенерируются равноправно с шумами
сопротивления потерь и ухудшают шумовые
характеристики усилителя. Значение
зависит
от типа следующего за регенеративным
усилителем каскада.
Если
это диодныйсмеситель,
то значение
может
достигать (3÷10) 103К,
что существенно ухудшает коэффициент
шума и
эквивалентную
шумовую температуру приемного устройства.
Для уменьшения вклада шумов нагрузки
и повышения устойчивости проходного
усилителя между ним и нагрузкой включается
вентиль, находящийся при температуре
Т0.
Тогда
(5.34)
Для отражательного усилителя при аналогичных условиях имеем
,
(5.35)
.
Если
коэффициент регенерации
и
, то имеем
,(5.36)
(5.37)
Сравнение показывает, что отражательные усилители имеют более низкие собственные шумы и в большей мере пригодны для осуществления малошумящего усиления в диапазоне СВЧ.
Учитывая все выше сказанное, можно сделать вывод о предпочтительном использовании в приемных устройствах усилителей отражательного типа.
Полупроводниковые параметрические усилители
Параметрическим усилителем называется устройство, содержащее колебательный контур, в котором под воздействием внешнего источника (генератора накачки) изменяется энергоемкий параметр (емкость или индуктивность) и за счет соответствующей организации колебательной системы осуществляется усиление сигнала.
Различают полупроводниковые, ферритовые и электронно-лучевые параметрические усилители.
Полупроводниковые параметрические усилители (ППУ) в силу ряда положительных свойств (небольшая требуемая мощность генератора накачки,
возможность
микроминитюризации и т.д.) получили
наибольшее применение.
Основным
элементом ППУ является параметрический
диод, представляющий
собой обратно-смещенный p-n-переход,
включенный соответствующим
образом в колебательную систему, на
который подается постоянное
смешение
и
напряжение от генератора накачки,
создающее модуляцию
емкости. Зависимость емкости диода от
приложенного напряжения
смещения описывается выражением:
,
(5.38)
где
-
контактная разность потенциалов;
n - параметр, характеризующий нелинейные свойства емкости (для сварных диодов n = 1/2, для диффузионных - n = 1/3).
Если на обратно-смещенный р-n-переход подается напряжение накачки, то изменение емкости диода можно описать
(5.39)
,
где
,
,
- глубина
модуляции емкости на соответствующей
гармонике частоты накачки.
Вследствие нелинейной зависимости емкости параметрического диода от приложенного напряжения в ней могут возникать токи различных комбинационных частот
,
(5.40)
где
m,
n
- целые
числа, изменяющиеся от
до
.
Если емкость не имеет потерь, то распределение мощностей по комбинационным частотам определяется соотношением Менли-Роу
, (5.41)
(5.42)
где
- мощность на частоте
.
Следует отметить, что соотношения Менли-Роу вытекают из закона сохранения энергии для параметрического усилителя.
Наиболее интересны случаи, когда система работает на трех частотах - частотах сигнала и накачки и одной из комбинационных частот. Обычно комбинационная частота представляет собой либо суммарную либо рапюсшую частоты.
Рассмотрим параметрический усилитель , работающий па суммарной частоте, т.е. комбинационная частота представляет собой сумму частот
сигнала и генератора накачки. Применительно к уравнениям Менли-Роу указанные три частоты можно представить как
,
,
.(5.43)
Тогда на основании соотношений, Менли-Роу можно записать
, (5.44)
. (5.45)
Режим
работы при этом нерегенеративный, т.к.
при .
Коэффициент усиления по мощности из
второго уравнения определяетсякак
.
(5.46)
Параметрический усилитель такого типа наливают стабильным повышающим преобразователем. Их применение ограничивается тем, что при усилении сигналов диапазона СВЧ трудно добиться достаточно больших коэффициентов усиления.
Рассмотрим
пример, когда через нелинейную емкость
связываются колебательные цепи,
настроенные на частоты ,
,
.
В соответствии с соотношениями Менли-Роу имеем
, (5.47)
. (5.48)
или
(5.49)
Отсюда
следует, что цепи частот ,
с
точки
зрения параметрического воздействия
энергетически эквивалентны, мощность
генератора накачки перекачивается
в обе эти цепи или, другими словами,
отрицательная проводимость
вносится как на частоте сигнала, так и
на разностной частоте.
Следовательно, параметрические усилители такого типа являются регенеративными.
В
зависимости от соотношения частот и
резонансы
могут быть либо в различных колебательных
системах, либо, если
водной
колебательной системе.
В первом случае параметрический усилитель называют двухконтурным (контура, настроенные на частоту накачки не учитываются), во втором случае - одноконтурным.
Наибольшее распространение получили двухконтурные ППУ отражательного типа, поскольку в отличие от одноконтурных ППУ не требуют жесткой фазировки частот сигнала и накачки и позволяют реализовать низкие шумовые температуры в сочетании с хорошей широкополосностью.
Структурная схема параметрического усилителя может быть представлена в следующем виде (рис. 5.9).
2 - высокочастотным трансформатор;
3 - сигнальный контур,
4 - фильтр нижних частот;
5 - подстройка контура разностной частоты;
6 - контур разностной частоты;
7 - генератор накачки;
8 - источник постоянного
смешения;
ПД- параметрический диод;
Сбя - блокировочная
емкость;
СН - согласованная нагрузка.
Рис.5 9
Структурная схема параметрического усилителя
Напряжение сигнала на ППУ поступает через циркулятор 1 из антенно-фидерной системы, усиленный сигнал направляется циркулятором в последующие каскады приемника. Согласованная нагрузка включается в 4-ое плечо циркулятора и позволяет повысить стабильность усиления ППУ по сравнению со случаем использования в нем трехплечего циркулятора.
Резонансная
система двухконтурного ППУ состоит из
цепей сигнального
, разностной
частот и частоты накачки
,
а также органов их регулирования.
В
тракт сигнальной частоты включают
высокочастотный трансформатор
2,
обеспечивающий требуемую связь
сигнального резонатора 3
с
входным
плечом циркулятора. В эту же цепь часто
включают фильтр нижних
частот 4,
предотвращающий
прохождение в сигнальный тракт частот
, и
и одновременно устраняющий влияние
регулировок сигнального
контура на остальные цепи.
Параметрический диод (ПД) является элементом связи между контурами сигнальной 4 и разностной 6 частот. Рабочая точка ПД задается внешним источником постоянного напряжения 8, который закорачивается по высокой частоте Сбя.
Генератор накачки включает в себя не только автогенератор, но и элементы развязки (вентили).