
- •Устройства приема и обработки сигналов
- •Введение
- •I. Классификация радиоприемных устройств
- •Супергетеродинные приемники
- •II. Основные характеристики радиоприемников
- •1. Чувствительность.
- •2. Избирательность.
- •3. Динамический диапазон.
- •Шумы колебательного контура
- •Шумы антенны
- •Шумы активных элементов
- •Коэффициент шума
- •Использование коэффициента шума
- •Коэффициент шума каскадного соединения 4-полюсника
- •Влияние антенного фидера на общий коэффициент шума
- •IV. Входные цепи
- •Входные устройства, работающие на настроенные антенно-фидерные системы
- •Автотрансформаторное входное устройство
- •Двойная автотрансформаторная схема входного устройства
- •Входное устройство с последовательным включением индуктивности
- •Трансформаторное входное устройство
- •Особенности входных цепей различных частотных диапазонов
- •Входные цепи на коаксиальных линиях
- •Входные цепи на полосковых линиях
- •Входные цепи на объемных резонаторах
- •Входные устройства приемников декаметровых и более длинных волн
- •Трансформаторное входное устройство
- •Входное устройство с емкостной связью между контуром и антенной
- •Входная цепь с ферритовой антенной
- •Борьба с приемом помех на промежуточной частоте
- •V. Усилители радиочастоты
- •Основные требования и качественные показатели
- •1. Резонансный коэффициент усиления по напряжению
- •Резонансный усилительный каскад умеренно высоких частот
- •Устойчивость резонансного каскада
- •Методы повышения устойчивости резонансных каскадов
- •Транзисторные малошумяшие усилители диапазона свч
- •Регенеративные малошумящие усилители диапазона свч
- •Шумовые свойства регенеративных усилителей
- •Полупроводниковые параметрические усилители
- •Усилители на туннельных диодах (утд)
- •VI. Усилители промежуточной частоты (полосовые усилители)
- •Усилители с одноконтурными каскадами, настроенными на одну частоту
- •Усилители с двухконтурным фильтром
- •Усилители с фильтром сосредоточенной селекции
- •VII. Преобразователи частоты
- •1.1. Основные качественные показатели преобразователей
- •7.2 Общая теория преобразователей частоты
- •7.3. Преобразователи частоты на полевых и биполярных транзисторах
- •7.4 Диодные преобразователи частоты
- •7.5 Балансные преобразователи частоты
- •7.6 Кольцевые преобразователи
- •7.7 Преобразователи без зеркального канала
- •VIII. Детекторы радиосигналов
- •8.1 Классификация детекторов
- •8.2 Амплитудные детекторы
- •8.3 Синхронные детекторы
- •8.4 Диодные детекторы
- •8.5 Амплитудные детекторы в режиме детектирования сильных сигналов
- •8.6 Искажения сигнала при детектировании
- •8.7 Особенности ад на биполярных транзисторах
- •8.8 Импульсный детектор
- •8.9 Фазовые детекторы
- •8.9.1 Фазовые детекторы коммуникационного типа
- •8.9.2 Фазовые детекторы перемножительного типа
- •8.10 Частотные детекторы
- •8.10.1 Частотные детекторы с амплитудным преобразованием
- •8.10.2 Частотные детекторы с фазовым преобразованием
- •8.11 Детекторная характеристика чд на линиях задержки
- •8.12 Дробный частотный детектор
- •8.13 Частотные детекторы с преобразованием частотной модуляции
- •IX. Ограничители амплитуды сигналов
- •9.1 Транзисторные ограничители амплитуды сигналов
- •9.2 Диодные ограничители амплитуды сигналов
- •X. Регулироки в радиоприемниках
- •10.1 Назначение и виды регулировок
- •10.2 Автоматическая регулировка усиления (ару)
- •10.2.1 Обратная система ару
- •10.3 Переходные процессы при автоматической
- •10.4 Автоматическая подстройка частоты (апч)
- •10.4.1 Принципы апч. Разновидности системы апч
- •4.4.2 Системы апч при импульсных сигналах
- •10.4.3 Элементы системы апч
- •10.4.4 Регулировочные характеристики
- •10.4.5 Переходные процессы в системах апч
- •XI.Помехоусойчивость приемника и оптимальные методы приема. Особенности приемников различного назначения.
- •11.1 Помехоустойчивость чм-приема при гармонической помехи
- •11.2 Помехозащищенность при флуктуационной помехе
- •11.3 Радиоприем одной боковой полосы частот
- •11.4 Радиоприемники синхронного приема
- •XII. Расчет и проектирование нелинейных каскадов.
- •12.1. Транзисторный преобразователь частоты для диапазона умерено высоких частот.
- •12.2. Диодный балансный смеситель свч диапазона
- •12.3. Расчет детектора радиоимпульсов
- •XIII. Методические указания к выполнению курсовой работы
- •13.1. Цели и задачи курсовой работы.
- •Содержание и объем курсовой работы
- •Требования к оформлению отчета
- •13.2 Последовательность расчета радиоприемного устройства
- •13.3. Анализ задания и подбор литературы
- •13.4. Расчет структурной схемы
- •Рекомендованная литература
Регенеративные малошумящие усилители диапазона свч
Многие из применяющихся в настоящее время малошумящих усилителей являются регенеративными или усилителями с положительной обратной связью, которая сопровождается внесением в сигнальную цепь отрицательной проводимости. Поэтому часто их называют усилителями с отрицательной проводимостью или усилителями с отрицательным сопротивлением.
В зависимости от физической основы создания эффекта отрицательной проводимости регенеративными могут быть квантовые парамагнитные усилители, параметрические усилители, усилители на тунельных диодах и т.д.
Эти усилители характеризуются рядом общих свойств, которые рассматриваются далее.
В регенеративных СВЧ-усилителях регенерирующий элемент обычно включается в колебательную систему, определенным образом связанную с источником сигнала и нагрузкой. В общем случае эта связь может осуществляться через одну или две пары зажимов. Соответственно различают отражательные и проходные регенеративные усилители.
Отражательные усилители для разделения приходящей волны и усиленной отраженной сигнальной волны предполагают использование невзаимных устройств - ферритовых циркуляторов, а а проходных - вентили.
Усилитель
отражательного типа
Рис.5
7.а.
Усилитель проходного типа
Рис.5 7.б.
Коэффициент усиления по мощности усилителя отражательного типа определяется как
,
(5.20)
где Ротр - мощность отраженной волны сигнала;
Рпад - мощность сигнала от источника;
zвх - входное сопротивление резонатора с регенерирующим элементом;
z0 - волновое сопротивление плеча циркулятора.
Эквивалентные схемы отражательного и проходного усилителей можно представить следующим образом (рис. 5.8.а, б).
Эквивалентная
схема усилителя отражательного типа
Рис.5
8
Эквивалентная
схема усилителя проходного типа
Рис.5.8.б
Для
эквивалентной схемы отражательного
усилителя характерно то, что в ней
присутствует лишь одно вносимое
сопротивление
. Это
объясняется тем, что резонатор
подключается к одному плечу циркуля-тора
и сопротивление генератора и нагрузки,
вносимые в контур, оказываются
физически совмещенными.
Оценим параметры таких усилителей. Первоначально рассмотрим усилитель проходного типа.
Коэффициент усиления по мощности такого усилителя определяется по формуле
, (5.21)
где
- мощность сигнала, выделяемая в нагрузке;
-
номинальная мощность источника сигнала;
- полное
сопротивлении сигнального контура.
Отсюда следует, что
. (5.22)
При резонансе
. (5.23)
Вводя коэффициент регенерации, определяемый отношением вносимого отрицательного сопротивления к полному активному сопротивлению нагруженного контура
,
(5.24)
получим
. (5.25)
Если
резонансная система представляет собой
одиночный контур, для которого вблизи
резонансной частоты обобщенная
расстройка (где
), а нагруженная добротность сигнального
контура определяется выражением
,
то относительная полоса пропускания
по уровню половинной мощности равна
.
Поскольку рассматриваемый усилитель охвачен положительной обратной связью, оценим площадь его усиления
. (5.26)
Считая
и
,имеем для усилителя
проходного типа
. (5.27)
Проводя аналогичный анализ отражательного усилителя, можно показать, что для него
. (5.28)
Сравнение последних формул показывает, что отражательный усилитель при прочих равных условиях характеризуется большей широкополосностыо и, следовательно, в этом отношении имеет преимущества по сравнению с проходными.
Основным недостатком регенеративных усилителей является их узкополосность. На практике при усилении 13÷20 дб относительная полоса пропускания составляет единицы процентов. Для расширения полосы
пропускания регенеративных усилителей используют специальные корректирующие цепи или более сложные резонансные системы, которые позволяют расширить полосу пропускания до 30÷40 % от несущей.