
- •Устройства приема и обработки сигналов
- •Введение
- •I. Классификация радиоприемных устройств
- •Супергетеродинные приемники
- •II. Основные характеристики радиоприемников
- •1. Чувствительность.
- •2. Избирательность.
- •3. Динамический диапазон.
- •Шумы колебательного контура
- •Шумы антенны
- •Шумы активных элементов
- •Коэффициент шума
- •Использование коэффициента шума
- •Коэффициент шума каскадного соединения 4-полюсника
- •Влияние антенного фидера на общий коэффициент шума
- •IV. Входные цепи
- •Входные устройства, работающие на настроенные антенно-фидерные системы
- •Автотрансформаторное входное устройство
- •Двойная автотрансформаторная схема входного устройства
- •Входное устройство с последовательным включением индуктивности
- •Трансформаторное входное устройство
- •Особенности входных цепей различных частотных диапазонов
- •Входные цепи на коаксиальных линиях
- •Входные цепи на полосковых линиях
- •Входные цепи на объемных резонаторах
- •Входные устройства приемников декаметровых и более длинных волн
- •Трансформаторное входное устройство
- •Входное устройство с емкостной связью между контуром и антенной
- •Входная цепь с ферритовой антенной
- •Борьба с приемом помех на промежуточной частоте
- •V. Усилители радиочастоты
- •Основные требования и качественные показатели
- •1. Резонансный коэффициент усиления по напряжению
- •Резонансный усилительный каскад умеренно высоких частот
- •Устойчивость резонансного каскада
- •Методы повышения устойчивости резонансных каскадов
- •Транзисторные малошумяшие усилители диапазона свч
- •Регенеративные малошумящие усилители диапазона свч
- •Шумовые свойства регенеративных усилителей
- •Полупроводниковые параметрические усилители
- •Усилители на туннельных диодах (утд)
- •VI. Усилители промежуточной частоты (полосовые усилители)
- •Усилители с одноконтурными каскадами, настроенными на одну частоту
- •Усилители с двухконтурным фильтром
- •Усилители с фильтром сосредоточенной селекции
- •VII. Преобразователи частоты
- •1.1. Основные качественные показатели преобразователей
- •7.2 Общая теория преобразователей частоты
- •7.3. Преобразователи частоты на полевых и биполярных транзисторах
- •7.4 Диодные преобразователи частоты
- •7.5 Балансные преобразователи частоты
- •7.6 Кольцевые преобразователи
- •7.7 Преобразователи без зеркального канала
- •VIII. Детекторы радиосигналов
- •8.1 Классификация детекторов
- •8.2 Амплитудные детекторы
- •8.3 Синхронные детекторы
- •8.4 Диодные детекторы
- •8.5 Амплитудные детекторы в режиме детектирования сильных сигналов
- •8.6 Искажения сигнала при детектировании
- •8.7 Особенности ад на биполярных транзисторах
- •8.8 Импульсный детектор
- •8.9 Фазовые детекторы
- •8.9.1 Фазовые детекторы коммуникационного типа
- •8.9.2 Фазовые детекторы перемножительного типа
- •8.10 Частотные детекторы
- •8.10.1 Частотные детекторы с амплитудным преобразованием
- •8.10.2 Частотные детекторы с фазовым преобразованием
- •8.11 Детекторная характеристика чд на линиях задержки
- •8.12 Дробный частотный детектор
- •8.13 Частотные детекторы с преобразованием частотной модуляции
- •IX. Ограничители амплитуды сигналов
- •9.1 Транзисторные ограничители амплитуды сигналов
- •9.2 Диодные ограничители амплитуды сигналов
- •X. Регулироки в радиоприемниках
- •10.1 Назначение и виды регулировок
- •10.2 Автоматическая регулировка усиления (ару)
- •10.2.1 Обратная система ару
- •10.3 Переходные процессы при автоматической
- •10.4 Автоматическая подстройка частоты (апч)
- •10.4.1 Принципы апч. Разновидности системы апч
- •4.4.2 Системы апч при импульсных сигналах
- •10.4.3 Элементы системы апч
- •10.4.4 Регулировочные характеристики
- •10.4.5 Переходные процессы в системах апч
- •XI.Помехоусойчивость приемника и оптимальные методы приема. Особенности приемников различного назначения.
- •11.1 Помехоустойчивость чм-приема при гармонической помехи
- •11.2 Помехозащищенность при флуктуационной помехе
- •11.3 Радиоприем одной боковой полосы частот
- •11.4 Радиоприемники синхронного приема
- •XII. Расчет и проектирование нелинейных каскадов.
- •12.1. Транзисторный преобразователь частоты для диапазона умерено высоких частот.
- •12.2. Диодный балансный смеситель свч диапазона
- •12.3. Расчет детектора радиоимпульсов
- •XIII. Методические указания к выполнению курсовой работы
- •13.1. Цели и задачи курсовой работы.
- •Содержание и объем курсовой работы
- •Требования к оформлению отчета
- •13.2 Последовательность расчета радиоприемного устройства
- •13.3. Анализ задания и подбор литературы
- •13.4. Расчет структурной схемы
- •Рекомендованная литература
Транзисторные малошумяшие усилители диапазона свч
Современные биполярные и полевые СВЧ-транзисторы позволяют разработать малошумящие усилители дециметрового, сантиметрового и миллиметрового диапазона волн. В диапазоне 4-6 ГГц широко используются биполярные транзисторы, а в более высокочастотном диапазоне лучшие показатели имеют полевые транзисторы.
По численным оценкам полевые транзисторы в будущем могут быть созданы для работы в диапазоне частот до 1000 ГГц, при этом коэффициент шума на частотах 200 ГГц составит 4 дб. Современные лучшие полевые транзисторы имеют коэффициент шума 1,3 дб на частотах 12 ГГц и 4 дб на частоте 30 ГГц при коэффициенте усиления 11 и 5 дб соответственно.
Расчеты транзисторных СВЧ-усилителей удобно проводить, представляя транзистор как 4-х полюсник с известными (как правило, экспериментально измеренными) параметрами рассеяния или S-параметрами. Эти параметры СВЧ-транзисторов можно измерить гораздо точнее, чем параметры элементов эквивалентной схемы транзистора. Обычно рассчитывается один каскад усилителя, а требуемое усиление реализуется путем каскадного соединения отдельных усилителей.
Функциональная схема однокаскадного усилителя имеет вид (рис. 5.4).
Рис.5
4
Здесь
,
,
,
-
коэффициенты отражения от входных и
выходных
сопротивлений на зажимах транзистора
и усилителя соответственно,
и
-
коэффициенты отражения
от сопротивлений генератора и нагрузки,
трансформированных через трансформаторы
Тр1
и Тр2
к входным и выходным зажимам транзистора.
- волновое сопротивление подводящих
линий передачи.
Усилители могут быть безусловно устойчивыми и условно устойчивыми. Для безусловно устойчивого усилителя возможно двухстороннее комплексно-сопряженное согласование
(5.18)
Двухстороннее комплексно-сопряженное согласование достигается выбором структуры и элементов трансформаторов Тр1 и Тр2. При этом коэффициент усиления по мощности максимален и равен
.
(5.19)
где
- инвариантный коэффициент устойчивости.
Для
условно устойчивого усилителя
двухстороннее комплексно-сопряженное
согласование невозможно, так как входное
или выходное
сопротивление
имеет отрицательную действительную
часть. Однако и в
этом
случае
можно обеспечить устойчивую работу
усилителя, выбрав
должным образом внешние пассивные нагрузки усилителя, т.е. задавшись величинами Гг и Гн.
Часто применяемый способ обеспечения устойчивой работы условно устойчивого усилителя состоит в том, что с помощью стабилизирующих цепей добиваются безусловной устойчивости эквивалентного 4-хполюсника "транзистор - стабилизирующая цепь".
Простейшая стабилизирующая цепь представляет собой резистор, подключаемый последовательно (или параллельно) к выходным зажимам транзистора. Стабилизирующий резистор компенсирует с некоторым запасом отрицательную часть выходного сопротивления (проводимости) непосредственно на зажимах транзистора во всем частотном диапазоне благодаря чему эквивалентный 4-хполюсник становится безусловно устойчивым.
Стабилизирующий резистор можно подключать и к входным зажимам транзистора, однако при этом увеличивается коэффициент шума усилителя.
В широкополосных СВЧ-усилителях используются более сложные стабилизирующие цепи - Т и П-образные 4-хполюсники на элементах с сосредоточенными либо распределенными параметрами и искусственно введенными потерями. Такие стабилизирующие цепи выполняют одновременно функции выравнивания АЧХ усилителя в широкой полосе частот.
Вопросы оптимизации транзисторных СВЧ малошумящих усилителей в настоящее время решают с помощью ЭВМ. Тем не менее можно высказать ряд рекомендаций, которые позволяют значительно сократить объем вычислений.
Полоса пропускания СВЧ-усилителей обычно не превышает 10÷15%. В такой полосе частот S-параметры транзисторов в первом приближении можно считать постоянными, что позволяет аппроксимировать входные и выходные сопротивления с помощью простейших RC и RL-цепей и воспользоваться известными соотношениями для расчета полосы пропускания согласно теории согласования комплексных нагрузок с линией передачи.
Если структура трансформаторов Тр1, и Тр2 уже выбраны на этапе расчета коэффициента усиления или шума на заданной частоте, то всегда можно численно определить полосу пропускания.
Определенное противоречивое требование обеспечения высокого качества согласования усилителя по входу и выходу и получение минимального коэффициента шума, удачно разрешается при использовании балансной схемы усилителя. В простейшем виде она содержит два квадратурных направленных ответвителя НО, между которыми включены два одиночных транзисторных каскада.
Благодаря высокому качеству согласования из отдельных балансных усилителей легко строится многокаскадный усилитель.
Рис.5 5
Транзисторные УРЧ являются входными усилительными каскадами радиоприемного устройства и работают в сложной электромагнитной обстановке, поскольку возможны достаточно интенсивные помехи. В этих условиях за счет нелинейности вольт-амперных и вольт-фарадных характеристик транзисторов в УРЧ возникают нелинейные эффекты, ухудшающие реальную чувствительность. Поэтому необходимо повышать линейность этих усилителей.
Существенное ослабление нелинейных эффектов УРЧ достигается за счет использования во входных каскадах мощных (среднемощных) транзисторов и каскадов, охваченных отрицательной обратной связью (ООС).
Рис.5 6
Применение ООС в транзисторных УРЧ целесообразно при определенной глубине обратной связи.
Для того, чтобы цепи ООС существенно не ухудшали коэффициента шума транзисторного УРЧ, их выполняют на реактивных элементах с малыми потерями, например, высокочастотных трансформаторах.
В диапазонных транзисторных УРЧ перестройка контуров обычно производится с помощью варикапов.