Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Коллоквиум по физике 3.doc
Скачиваний:
13
Добавлен:
12.03.2015
Размер:
477.18 Кб
Скачать
  1. 1) Теплоёмкость тела (обычно обозначается латинской буквой C) — физическая величина, определяющая отношение бесконечно малогоколичества теплоты δQ, полученного телом, к соответствующему приращению его температуры δT:

Единица измерения теплоёмкости в системе СИ — Дж/К.

2) Удельной теплоёмкостью называется теплоёмкость, отнесённая к единичному количеству вещества. Количество вещества может быть измерено в килограммах, кубических метрах и молях. В зависимости от того, к какой количественной единице относится теплоёмкость, различают массовую, объёмную и молярную теплоёмкость.

3) Молярная теплоёмкость (Сμ) — это количество теплоты, которое необходимо подвести к 1 молю вещества, чтобы нагреть его на единицу температуры. В СИ измеряется в джоулях на моль на кельвин (Дж/(моль·К)).

Массовая теплоёмкость (С) — это количество теплоты, которое необходимо подвести к единице массы вещества, чтобы нагреть его на единицу температуры. В СИ измеряется в джоулях на килограмм на кельвин (Дж·кг−1·К−1).

Объёмная теплоёмкость (С′) — это количество теплоты, которое необходимо подвести к единице объёма вещества, чтобы нагреть его на единицу температуры. В СИ измеряется в джоулях на кубический метр на кельвин (Дж·м−3·К−1).

4) Удельная измеряется в Дж/(кг*К), молярная в Дж/(моль*К). Очевидно, чтобы получить из удельной теплоёмкости молярную - нужно разделить её на молярную массу в-ва (в случае системы СИ - обязательно выраженной в кг/моль! вообще, никогда не забывайте соотносить единицы измерения)

  1. 1) Сp = Cv + R Cp = Cv + l(dV/dT)p = Cv + l(R/P) но для идеальных газов l=P отсюда Cp= Cv + (P*R)/P = Cv + R где R - универсальная газовая постоянная, l - теплота расширения газа на единицу объема, (dV/dT)p - производная от V по T при постоянном давлении. Короче говоря при постоянном давлении газ не только поглощает теплоту но и выполняет работу расширения поэтому Cp > Cv - которое выражено при постоянном объеме (изохорный процесс), а Cp выполняет работу которая равна: dA=PdV

2) Cp-Cv=R  Cv -Молярная теплоемкость при постоянном объеме  Cp – молярная теплоемкость в изобарном процессе  R=8,31 Дж/моль*К

Вывод формулы Майера  Если в результате теплообмена телу передается некоторое количество теплоты, то внутренняя энергия тела и его температура изменяются. Количество теплоты Q, необходимое для нагревания 1 кг вещества на 1 К называют удельной теплоемкостью вещества c.  c = Q / (mΔT).  Во многих случаях удобно использовать молярную теплоемкость C:  C = M · c,  где M – молярная масса вещества.  Определенная таким образом теплоемкость не является однозначной характеристикой вещества. Согласно первому закону термодинамики изменение внутренней энергии тела зависит не только от полученного количества теплоты, но и от работы, совершенной телом. В зависимости от условий, при которых осуществлялся процесс теплопередачи, тело могло совершать различную работу. Поэтому одинаковое количество теплоты, переданное телу, могло вызвать различные изменения его внутренней энергии и, следовательно, температуры.  Такая неоднозначность определения теплоемкости характерна только для газообразного вещества. При нагревании жидких и твердых тел их объем практически не изменяется, и работа расширения оказывается равной нулю. Поэтому все количество теплоты, полученное телом, идет на изменение его внутренней энергии. В отличие от жидкостей и твердых тел, газ в процессе теплопередачи может сильно изменять свой объем и совершать работу. Поэтому теплоемкость газообразного вещества зависит от характера термодинамического процесса. Обычно рассматриваются два значения теплоемкости газов: CV – молярная теплоемкость в изохорном процессе (V = const) и Cp – молярная теплоемкость в изобарном процессе (p = const).  В процессе при постоянном объеме газ работы не совершает: A = 0. Из первого закона термодинамики для 1 моля газа следует  QV = CVΔT = ΔU.  Изменение ΔU внутренней энергии газа прямо пропорционально изменению ΔT его температуры.  Для процесса при постоянном давлении первый закон термодинамики дает:  Qp = ΔU + p(V2 – V1) = CVΔT + pΔV,  где ΔV – изменение объема 1 моля идеального газа при изменении его температуры на ΔT. Отсюда следует:  Отношение ΔV / ΔT может быть найдено из уравнения состояния идеального газа, записанного для 1 моля:  pV = RT,  где R – универсальная газовая постоянная. При p = const  Таким образом, соотношение, выражающее связь между молярными теплоемкостями Cp и CV, имеет вид (формула Майера):  Cp = CV + R.

  1. Закон Грюнaйзена, установленный чисто эмпирическим путем, был затем

обоснован методами статистической физики. Следует подчеркнуть, что этот

закон имеет совершенно ясный термодинамический смысл. В самом деле,

в соответствии с уравнением (4.55)

Пусть ТДС рассматривается при двух параметрах давления и объема, имеется два состояния системы I и II. Нужно перевести систему из состояния I в состояние II либо по пути А, либо по пути В (рис. 3).

Рис. 3

Предположим, что по пути А изменение энергии будет ΔUA, а по пути В – ΔUB. Внутренняя энергия зависит от пути процесса

ΔUA = ΔUB,

ΔUA – ΔUB ≠ 0.

Согласно пункту 1 из формулировок первого закона термодинамики, общий запас энергии в изолированной системе остается постоянным

ΔUA = ΔUB ,

U вн – функция состояния не зависит от пути процесса, а зависит от состояния системы I или II. U вн – функция состояния, является полным дифференциалом

Q = ΔU + А –

интегральная форма уравнения первого закона термодинамики.

δQ = dU + δA–

для бесконечно малого процесса, δA– сумма всех элементарных работ.

Калорические коэффициенты

Теплота изотермического расширения:

Уравнение первого закона термодинамики в калорических коэффициентах

δQ = ldv + CvdT,

где l – коэффициент изотермического расширения;

Сv– теплоемкость при постоянном объеме.

теплоемкость при const давлении,

δQ = hdp + СpdT,

δQ = χdP + ψpdv.

Связь между функциями CP и Cv

δQ = hdp + СpdT = ldv + CvdT,

для реального газа.

Для идеального газа l= р

Ср– СV= R,

к = ( δQ/дv)ρ– теплота изохорного расширения;

m = ( δQ/дP)v– теплота изобарного сжатия.

  1. Смотреть лабораторную работу по определению отношения теплоемкости по методу Клемана и Дезорма.

  2. Первое начало термодинамики. Формула (13.1) является выражением закона сохранения энергии. Действительно, исходя из опыта, для любого способа перехода ТС из состояния 1 в состояние 2 изменение внутренней энергии не зависит от способа такого перехода. Для бесконечно малых приращений параметров состояния первое начало термодинамики можно сформулировать, исходя из формулы (13.3):

элементарное количество теплоты, сообщенное термодинамической системе, идет на изменение ее внутренней энергии и совершение системой работы.

Количество теплоты, как следует из первого начала термодинамики, измеряется в тех же единицах, что работа или энергия, т.е. в Джоулях. Существует механический эквивалент теплоты, определенный экспериментально. 

1 Дж = 4.19 кал.

В случае совершения термодинамического цикла приращение внутренней  энергии равняется нулю и, исходя из первого начала термодинамики, получим, что:

A = Q.

Другими словами, для циклического процесса работа, совершаемая ТС, не может быть больше количества теплоты, сообщенного ей, т.е. 

невозможно создание вечного двигателя первого рода или  невозможно создать периодически действующий двигатель, который бы совершал большую работу, чем полученная извне энергия.

Если в изолированной ТС не происходит никаких превращений энергии, кроме теплообмена между телами, входящими в эту систему, то количество теплоты, отданное охлаждающимися при этом телами, равно количеству теплоты, полученному телами, которые нагреваются. Суммарная внутренняя энергия системы при этом не меняется, т.е. DU1-2 = 0. Это выражение называется уравнением теплового баланса.

С учетом вышеизложенного, для конечных величин изменения параметров ТС, т.е. для случая перехода системы из состояния 1 в состояние 2 можно записать следующее равенство, позволяющее рассчитать изменение внутренней энергии DU1-2:

DU1-2 = Q1-2 + A1-2' = Q1-2 - A1-2       (13.1) или Q1-2 = DU1-2 + A1-2,                            (13.2) где A1-2 - работа, совершаемая системой против действия внешних сил; A1-2' - работа, совершаемая внешними силами над системой Q1-2 - количество теплоты, сообщенное системе.

При переходе к бесконечно малым изменениям будет справедливо следующее равенство:

dQ = dU + dA,     (13.3) где величины элементарного количества теплоты dQ и работы и dAположительны, если теплота подводится к системе и система совершает работу над внешними силами.

Работа и количество теплоты не являются функциями состояния, но их элементарные количества определяют изменение внутренней энергии системы, что и отражено в уравнении (13.3).

http://solidstate.karelia.ru/~KOF/OLD/mathemat/lectures/lecture13_a.html

  1. Барометрическая формула. Распределение Больцмана.

 При выводе основного уравнения МКТ газов и максвелловского распределения молекул по скоростям предполагалось, что на молекулы газа внешние силы не действуют, поэтому молекулы равномерно распределены по объему. Однако молекулы любого газа находятся в потенциальном поле тяготения Земли. Тяготение и тепловое движение молекул приводят к некоторому стационарному состоянию газа, при котором давление газа с высотой убывает. Больцман обобщил распределение Максвелла на случай поведения частиц в произвольном силовом поле.

Гидростатическое давление столба жидкости или газа:    ,   где  .

,   тогда         =>          =>        ;

В итоге мы получаем:     −   барометрическая формула. Барометрическую формулу можно преобразовать, если воспользоваться выражением :

   −    распределение Больцмана во внешнем потенциальном поле. Из нее следует, что при постоянной температуре плотность газа больше там, где меньше потенциальная энергия его молекул. Если частицы имеют одинаковую массу и находятся в состоянии хаотического теплового движения, то распределение Больцмана справедливо в любом внешнем потенциальном поле, а не только в поле сил тяжести.

График зависимости давления от высоты:

 Реальная зависимость более сложная, т. к. .

  1. 1) Распределение по вектору скорости

Учитывая, что плотность распределения по скоростям  пропорциональна плотности распределения по импульсам:

и используя  мы получим:

,

что является распределением Максвелла по скоростям. Вероятность обнаружения частицы в бесконечно малом элементе  около скорости  равна

2) Наиболее вероятная скорость

наиболее вероятная скорость — вероятность обладания которой любой молекулой системы максимальна, и которая соответствует максимальному значению . Чтобы найти её, необходимо вычислить , приравнять её нулю и решить относительно :

3) Средняя скорость

Подставляя  и интегрируя, мы получим

4) Среднеквадратичная скорость

Подставляя  и интегрируя, мы получим

  1. Основное уравнение мкт

, где k является постоянной Больцмана (отношение универсальной газовой постоянной R к числу Авогадро NA), i — число степеней свободы молекул ( в большинстве задач про идеальные газы, где молекулы предполагаются сферами малого радиуса, физическим аналогом которых могут служить инертные газы), а T - абсолютная температура.

Основное уравнение МКТ связывает макроскопические параметры (давлениеобъёмтемпература) газовой системы с микроскопическими (масса молекул, средняя скорость их движения).

Вывод основного уравнения мкт

Пусть имеется кубический сосуд с ребром длиной  и одна частица массой  в нём.

Обозначим скорость движения , тогда перед столкновением со стенкой сосуда импульс частицы равен , а после — , поэтому стенке передается импульс . Время, через которое частица сталкивается с одной и той же стенкой, равно .

Отсюда следует:

Так как давление , следовательно сила 

Подставив, получим: 

Преобразовав: 

Так как рассматривается кубический сосуд, то 

Отсюда:

.

Соответственно,  и .

Таким образом, для большого числа частиц верно следующее: , аналогично для осей y и z.

Поскольку , то . Это следует из того, что все направления движения молекул в хаотичной среде равновероятны.

Отсюда 

или .

Пусть  — среднее значение кинетической энергии всех молекул, тогда:

, откуда, используя то, что , а , имеем .