
- •Реферат
- •Термины и определения
- •Перечень сокращений и обозначений
- •Введение
- •1. Научно-исследовательский раздел. Анализ существующих способов и технических средств для гранулирования субстрата после выращивания вешенки
- •1.1Питательные субстраты
- •1.2 Приготовление субстрата
- •1.3 Стерилизация субстрата
- •1.4 Инокуляция субстрата
- •1.5 Рост и развитие плодовых тел
- •2. Проектный и производственно-технологический раздел
- •2.1. Физико-механические свойства субстрата
- •2.2. Характеристика субстрата после выращивания грибов вешенки
- •2.3. Предлагаемая технология производства гранул из отработанного субстрата вешенки с использованием дозатора.
- •2.4 Устройство и принцип работы гранулятора
- •2.5 Описание модернизации гранулятора
- •2.6 Расчет шнекового дозатора
- •2.8 Расчёт клиноременной передачи
- •2.9 Расчёт шпоночного соединения
- •2.10 Определение производственной мощности гранулятора
- •2.11. Операционно-технологическая карта. Агротехнические требования
- •3. Безопасность жизнедеятельности
- •3.1 Требования к технологическим процессам
- •3.2 Расчет заземления
- •3.3 Экологическая безопасность
- •3.4 Безопасность жизнедеятельности в чрезвычайных ситуациях
- •4 Экономическое обоснование проекта
- •4.1 Расчет затрат на конструкторскую разработку
- •4.2 Экономическая эффективность модернизированного гранулятора
- •Заключение
- •Список использованных источников
2.6 Расчет шнекового дозатора
Принимаем наружный диаметр винта D= 0,25м, шаг винта
t = (0,8 …1)D= 0,25 м.
По значению заданной производительности находим частоту вращения винта шнека
Находим плотность станочной стружки и опилок
Находим мощность, затрачиваемую на привод винта
Конец винта соединим с разрушителем сводов в бункере, состоящим из червячного редуктора РЧУ -125-80 (межосевое расстояние – 125, передаточное число – 80) и лопастей длиной l =1,5 м.
Частота вращения лопастей
Крутящий момент на валу лопастей
где k – количество лопастей, шт. ;
b – ширина лопасти, b = 0,045 м;
h – высота деформируемого столба стружки, h = 0,25 м ;
f – коэффициент трения, f = 0,6.
Мощность на лопастном валу
Мощность привода
2.8 Расчёт клиноременной передачи
Рисунок 7 – Схема передачи
1 –шкив ведущий; 2−шкив ведомый; 3−ремень
Рассчитаем клиноременную передачу для привода гранулятора. Передача от электродвигателя к шкиву. Определим основные параметры.
Исходные
данные: мощность на ведущем шкиве
частота вращения ведущего шкива
;
передаточное отношение клиноременной
передачи
Электродвигатель переменного тока
4А112М4У3. Работа в 2 смены. Расположение
передачи наклонное – β =
.
2.
Расчётный диаметр ведомого шкива
,
мм
По
таблице 4.2.
3.
Уточняем передаточное отношение ременной
передачи
Отклонение фактического передаточного отношения от ранее принятого составляет 2,4%
4. Передаточное межосевое расстояние а, мм
5.
Расчётная длина ремня
,
мм
Принимаем
6. Межосевое расстояние а, мм
+
,5(125+355)
3,14=753,6
мм
7. Угол обхвата ремнём малого шкива α, град
[α]
12
Условие выполняется.
8.
Окружная скорость
м/с
Условие выполняется.
9.
Номинальная мощность, передаваемая
одним ремнём сечения Б.
кВт при
и
10.
Коэффициент обхвата малого шкива
α=147,
;
коэффициент окружной скорости
ʋ=9,52
м/с; коэффициент передаточного отношения
i=2,87;
коэффициент угла наклона
β=3
;
коэффициент длины ремня
0,93
L=1600
мм; коэффициент динамичности и режима
работы
для среднего режима и двусменной работы;
коэффициент, учитывающий число ремне
в комплекте
предварительно приняв Z=4
11.
Мощность передачи с одним ремнём в
заданных условиях эксплуатации
12. Число ремней Z
Принимаем Z=5
13.
Сила предварительно натяжения одного
ремня
Коэффициент,
учитывающий влияние центробежных сил
для сечения Б [10]
14.
Нагрузка на валы передачи
,
Н
15.
Число пробегов ремня v,
16.
Напряжение от силы предварительного
натяжения ремня
,
МПа
17.
Натяжение от окружности силы
,
МПа
18. Напряжение от центробежных сил , МПа
19.
Напряжения изгиба
МПа
Для
ремня сечения Б произведение Е
20.
Максимальные напряжения
,
МПа
21.
Расчётная долговечность ремня
,
часов
−
часов
2.9 Расчёт шпоночного соединения
Передача крутящего момента от промежуточного вала к ведущему валу осуществляется через муфту, соединенную с валом редуктора призматической шпонкой.
Рисунок 8 - Схема шпоночного соединения
Необходимо подобрать по ГОСТ 23360-78 призматическую шпонку и проверить шпоночное соединение на прочность при условии, что диаметр вала dв =40 мм. Выбираем шпонку с размерами вала
b= 12 мм, h = 8 мм, l = 80 мм.
Выбранную шпонку проверяют на смятие [1,6,18,20,21]
(3.26)
где Т - передаваемый момент, Н*мм;
d - диаметр вала, м;
1р- рабочая длина шпонки, мм;
-
допускаемое напряжение смятия, МПа.
Принимаем Т=29 Н*м, d=40 мм, 1 р=l-b=80-10=70 мм, t1=5 mm, h=8 мм.
= 80...120МПа
Выбранная призматическая шпонка удовлетворяет проверочным расчетам на снятие по допускаемым напряжениям. Окончательно принимаем призматическую шпонку 12*8*80 по ГОСТ 23360-78. [10].