- •© Издательство «Высшая школа», 1982предисловие
- •Полупроводниковые компоненты электронных цепей
- •Электропроводность полупроводников
- •Основные свойства и характеристик» полупроводников
- •Электрические переходы
- •1.7. Несимметричный р-л-пере- ход:
- •1 10. Энергетическая зонная диаграм-
- •Особенности и получение реальных р-п-переходов
- •Ние тока при изменении полярности напряжения (б):
- •Полупроводниковые диоды
- •Выпрямительные диоды
- •Импульсные диоды
- •Полупроводниковые стабилитроны
- •Туннельные диоды
- •Варикапы
- •Биполярные транзисторы
- •Рнс. 1.26. Эквивалентная схема для постоянного тока транзистора типа р-п-р, включенного по схеме с об
- •Транзистора при эмиттерном управ- лении (схема с об) (а) и базовом управлении (б)
- •§1.8. Биполярные транзисторы с инжекционным питанием
- •Тиристоры
- •Полевые транзисторы
- •Особенности компонентов электронных цепей в микроминиатюрном исполнении
- •Глава вторая элементы оптоэлектроники
- •Общие сведения
- •Управляемые источники света в цепях оптоэлектроники
- •Фотоприемники
- •Фоторезисторы
- •Фотодиоды
- •(В) и частотные (г) характеристики
- •Фототранзисторы
- •Световоды и простейшие оптроны
- •Глава третья усилители электрических сигналов
- •Общие сведения об усилителях электрических сигналов, их основных параметрах и характеристиках
- •Основные положения теории обратной связи применительно к усилителям
- •Статический режим работы усилительных каскадов
- •Усилительные каскады на полевых транзисторах
- •§ 3.5. Усилительный каскад на биполярном транзисторе с общим эмиттером
- •Позволяет получить наиболее высокий коэффициент усиления по напряжению:
- •Имеет невысокое входное и относительно большое выходное сопротивление;
- •Вносит фазовый сдвиг 180° в диапазоне «средних; (рабочих) частот.
- •Усилительный каскад на биполярном транзисторе с общей базой
- •Усилительный каскад на биполярном транзисторе с общим коллектором
- •§ 3.8. Усилительный каскад с эмиттерной связью
- •Дифференциальные усилительные каскады
- •Усилительные каскады с каскодным включением транзисторов
- •Управляемые источники тока и усилительные каскады на их основе
- •Усилительные каскады с трансформаторной связью
- •Мощные усилительные каскады
- •Многокаскадные усилители в интегральном исполнении
- •§ 4.3. Операционные усилители
- •Усилители, управляемые внешними сигналами
- •11 UbIlRi, 1% л# uBllB/r2.
- •£Cjrt Yi
- •Рио. 4.24. Схема сложного активного фильтра (а) и его лачх при снятии сигналов с вЧвыхода (б); нч-выхода (в); полосового выхода (г)
- •Нелинейные преобразователи электрических сигналов
- •Усилители с уменьшенным дрейфом нуля
- •Магнитоэлектронные преобразователи электрических сигналов
- •Выходного каскада усилителя магнитоэлектронного преобразователя (в)
- •.Устойчивость многокаскадных усилителен и коррекция их характеристик
- •Рнс. 4.37. Лачх первого звена (а) 'и лачх второго звена (б) усилителя
- •4.39. Лачх усилительного каскада аппроксимация экспериментально определенной лачх усилителя (б)
- •Глава пятая генераторы синусоидальных колебании
- •Общие сведения о генераторах синусоидальных колебаний
- •Генераторы типа lc
- •Генераторы типа rc
- •Автогенераторы с кварцевой стабилизацией частоты колебаний
- •Глава шестая линейные преобразователи импульсных сигналов
- •Общие сведения об импульсных процессах и устройствах
- •Пассивные линейные интегрирующие цепи
- •Интеграторы на основе операционных усилителей
- •, Рис. 6.15. Схема дифференцирующего устройства, применяемого на практике (а), и его лачх (б):
- •Укорачивающие цепи
- •Передача импульсов через rc-ц'епи
- •Глава седьмая электронные ключи
- •Диодные ключи
- •Рнс. 7.2. Схема диодного ключа, включенного в прямом направлении (а); зависимость распределения зарядов на базе от времени (б); характеристика переходных процессов в диодном ключе (в)
- •Транзисторные ключи
- •Транзисторные прерыватели
- •Анализ переходных процессов в транзисторе методом заряда базы
- •Анализ переходных процессов в транзисторном ключе
- •4 _ Циала (ж)
- •Ненасыщенные ключи
- •Транзисторные ключи на полевых транзисторах с управляющим р-л-переходом
- •— К'вост/'в нач
- •Ключи на мдп-транзисторах
- •Переходные процессы в ключах на полевых транзисторах с управляющим р-л-переходом
- •Переходные процессы в ключах на мдп-транзисторах
- •Глава восьмая нелинейные формирователи импульсов
- •§ 8.1. Ограничители на пассивных элементах
- •Ограничители на операционных усилителях
- •Общие сведения о логических элементах
- •Рис, 8.13. Передаточные характеристики неинвертирующего (а) и инвертирующего (б) логических элементов
- •Активные логические элементы
- •Триггеры
- •Триггер с эмиттерной связью
- •Формирователи напряжения прямоугольной формы на основе оу
- •Компараторы напряжения
- •Генераторы импульсов
- •Одновибраторы на основе логических элементов
- •А * с повышенной длительностью выходного импульса; б — на основе rs-триггера; в — с повышенной длительностью выходного импульса и малой длительностью стадии восста* новления
- •Одновибраторы на основе операционных усилителен
- •Мультивибраторы на основе логических элементов
- •«Вх! —Uaep — £ /вх Ai Al „ ,d 6 их л1
- •Генераторы прямоугольного напряжения на основе операционных усилителей
- •Генераторы линейно н ступенчато изменяющихся напряжений а
- •Размахом выходного напряжения Umi
- •Длительностью рабочего хода т9;
- •Длительностью обратного хода или временем воовтановления Tj
- •Рве. 9.14. Структурная (а) в принципиальная (б) схемы глин с кон- денсаторной ос в его диаграмма вапряжений(в)
- •Рис, 9.17. Принципиальная (в) я эквивалентная (б) схемы блэ- иинг-генератора
- •§ 9.7. Блокииг-генератор с трансформатором на сердечнике с прямоугольной петлей гистерезиса
- •Заключение
- •Литература
- •*Алфавитный указатель
- •4Оглавление
Полупроводниковые диоды
Полупроводниковым диодом называют полупроводниковый прибор с одним электрическим р-п-переходом и двумя доводами.
В зависимости от технологических процессов, использованных при их изготовлении, различают точечные диоды, сплавные диоды и диоды с диффузионной базой.
По конструктивным признакам их подразделяют на точечные, плоскостные, планарные, мезадиоды.
По функциональному назначению диоды делят на выпрямительные, универсальные, [импульсные, смесительные, детекторные, модуляторные, переключающие, умножительные, стабилитроны (опорные), туннельные, параметрические, фотодиоды, светодиоды, магнитодиоды и т. д.
Большинство полупроводниковых диодов выполняют на основе несимметричных р-п-переходов. Низкоомную область диода называют эмиттером, а высокоомную — базой. Для создания переходов с вентильными свойствами используют р-п-, p-i-, «-/-переходы, а также переходы металл — полупроводник. Идеализированная вольт-амперная характеристика диода описывается выражением (1.19).
В реальных диодах прямая и обратная ветви вольт-амперной характеристики отличаются от идеализированной. Это обусловлено тем, что тепловой ток h при обратном включении составляет лишь часть обратного тока диода. При прямом включении существенное влияние на ход вольт-амперной характеристики оказывает падение напряжения на сопротивлении базы диода, которое начинает проявляться уже при токах, превышающих 2—10 мА.
При практическом использовании диодов выделять составляющие, которые искажают идеализированную вольт-амперную характеристику, сложно и нецелесообразно. Поэтому у реальных диодов в .качестве одного из основных параметров используют обратный ток /обр который измеряют при определенном значении обратного напряжения.У германиевых диодов /обр « 1Т, у кремниевых /обр » 1т. Так как значения обратного тока у диодов изменяются в широких пределах (от экземпляра к экземпляру), в паспортных данных на каждый вид диода указывается его максимально допустимое значение.
Тепловой ток и остальные составляющие обратного тока сильно зависят от температуры. Для теплового тока справедлива зависимость
1т(Т) ~ 1г(Т0)&мг, (1.24)
где ДТ — Т — То; 1т(Тй) — тепловой ток при температуре То; а — постоянный коэффициент (для германия «Ge « 0,09 К“* при Т < < 350 К, для кремния а.^ « 0,13 К-1 при Т < 400 К).
С помощью выражения (1.24) можно ориентировочно определять обратный ток при разных температурах р-п-перехода у германиевых диодов. В кремниевых диодах в диапазоне рабочих температур доля теплового тока в полном обратном токе невелика: /обр «10® 1г. У них обратный ток в основном определяется генерационно-рекомбинационными явлениями в р-п-переходе.
Для инженерных расчетов обратного тока в зависимости от температуры окружающей среды можно пользоваться упрощенным выражением
Ч /обр (Л«/обр (То) 24Г/Г\ (1.25)
где Т* — приращение температуры, при котором обратный ток /обр(Л)) удваивается (Т* « 8-j-10°C для германия и Т* « 6 4-7° С для кремния).
В практике часто считают, что обратный ток германиевых диодов увеличивается в два раза, а кремниевых — в 2,5 раза при увеличении температуры на каждые 10° С. При этом фактическое изменение обратного тока обычно занижается. Так как обратный ток в кремниевых диодах на несколько порядков меньше, чем в германиевых, им часто пренебрегают. '
'Прямая ветвь вольт-амперной характеристики диода отклоняется от идеализированной из-за наличия токов рекомбинации в р-п-переходе, падения напряжения на базе диода, изменения (модуляции) сопротивления базы при инжекции в нее неосновных носителей заряда и внутреннего поля в базе, возникающего при большом коэффициенте инжекции. С учетом падения напряжения на базе диода уравнение прямой ветви вольт-амперной характеристики диода описывается уравнением
/ = /г(е<и-/гб)/Фг_1), (1.26)
где гб — омическое сопротивление базы диода.
Прологарифмировав (1.26), найдем падение напряжения на диоде:
U <рг1п (Шт + 1) + 1гб. (1.27)
Для малых токов / (1.27) имеет вид
U к фг1п (Шт + IX-
Падение напряжения на диоде U зависит от тока 7, протекающего через него, и имеет большее значение у диодов с малым 1т- Так как у кремниевых диодов тепловой ток /г мал, то и начальный участок прямой ветви характеристики значительно более пологий, чем у германиевых (рис. 1.13). При увеличении температуры прямая ветвь характеристики становится более крутой из-за увеличения 1т и уменьшения сопротивления базы. Падение напряжения, соответствующее
Рис. 1.13. Изменение вольт-амперных характеристик при изменении темпер^туры для германиевого (а) и кремниевого (б) диодов
тому же значению прямого тока, при этом уменьшается, что оценивается с помощью температурного коэффициента напряжения (TKU):
е = МЛкТ. (1.28)
TKU показывает, насколько должно измениться напряжение на р-п-переходе при изменении температуры на 1° С при 7 = const.
В настоящее время наиболее широко применяются сплавные и мезадиоды, а также диоды с диффузионной базой.
Рассмотрим некоторые типы диодов, применяемых в низкочастотных цепях.
