Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Структура-кинемат для КП ТММ.doc
Скачиваний:
22
Добавлен:
03.03.2015
Размер:
840.19 Кб
Скачать

6. Построение графика перемещений ведомого звена.

Обычно механизм создается с целью получения определенного движения выходного звена и преодоления им сил полезного сопротивления. Поэтому будем строить различные графики, связанные с характеристиками выходного звена – ползуна (точки F).

График перемещений SточкиF(рис. 10) строим по найденным 12-ти положениям механизма в функции положений кривошипа, или его угла поворотаφ, или времениt.

Рис. 10. График перемещений ползуна и изменения силы полезного сопротивления

Ползун Fсовершает возвратно-поступательное движение, которое начинается (нами принято) в точкеF0, соответствующей начальному положению кривошипа, и заканчивающееся за цикл движения (полный оборот кривошипа) в этой же точке.

Ординаты на графике перемещений равны

(5.1)

где F0Fi– отрезок на траектории точкиFв мм;

μl– масштаб длин, в котором построена схема механизма;

μS– выбранный нами масштаб графика перемещений (можно выбрать μS= μl, тогда соответствующие ординаты на графике будут равны отрезкам на чертеже, но, как правило, график тогда получается мелким по высоте).

Обычно μS выбирают в 1.5…2 раза меньше, чем μl. Тогда, например, при,,и т.д..

Теперь вычислим масштабы угла поворота и времени. Один цикл движения выходного звена – ползуна соответствует одному обороту кривошипа на угол 2π рад с частотой вращенияn1об/мин. Поэтому время одного оборота кривошипа или период движения ползуна равно в секундах

.

На графике один период движения соответствует расстоянию Zв мм и масштабы угла поворота и времени соответственно равны

.

7. Построение планов скоростей.

Построение планов скоростей так же, как и построение положений механизма, начинают с ведущего звена и далее переходят к структурным группам порядке их присоединения к ведущему звену в соответствии с формулой строения механизма. Построение плана скоростей механизма, например, для его третьего положения будем выполнять в следующем порядке.

1. Угловая скорость ведущего звена кривошипа

.

2. Окружная скорость точки В*)

Напомним, что линейная скорость точки направлена по касательной к траектории этой точки. Поэтому, скорость точки В направлена по касательной к окружности радиуса АВ, т.е. перпендикулярно кривошипу в рассматриваемом положении.

Для построения плана скоростей (рис. 11) выбираем масштаб скорости как отношение модуля скорости точки В к отрезку на плане скоростей **, изображающему эту скорость, т.е.

.

Точка p на плане скоростей является полюсом плана скоростей, в котором скорость равна нулю.

3. Определение скорости точки С.

Точка С является внутренней кинематической парой первой присоединенной структурной группы, внешние кинематические пары которой полностью определены. Поэтому скорость точки С как вектор находим из решения системы двух векторных уравнений движения точки С относительно внешних кинематических пар В и D:

(6.1)

Здесь количество черточек под скоростью показывает число известных характеристик скорости. Так скорости точек B и D полностью известны (величина и направление): скорость точки В нашли в предыдущем пункте, а скорость точки D равна нулю, как связанной со стойкой. Относительные скорости точки С относительно точки В vcb и точки С относительно точкиDvcdизвестны только по направлению, перпендикулярно соответственно звеньям СВ иCD. Решаем эту систему графически.

Выбираем положение полюса плана скоростей р (рис. 11) и из него перпендикулярно звену АВ в его третьем положении в сторону угловой скорости ω1 проводим вектор длиной (рb), соответствующий скорости точки В.

Рис.11 План скоростей механизма.

Далее в соответствии с первым уравнением системы (6.1) через точку b на плане скоростей проводим линию перпендикулярную звену CВ на схеме механизма, что соответствует направлению скорости точки С относительно точки B.

Скорость точки D равна нулю и на плане скоростей она совпадает с полюсом. Поэтому через полюс (точку d) в соответствии со вторым уравнением системы (6.1) проводим линию перпендикулярную звену СD, что соответствует направлению относительной скорости точки С относительно точки D. Точка пересечения направлений относительных скоростей дает положение точки С, а вектор (pс) – скорость точки С – решение системы векторных уравнений (6.1). Численное значение скоростей равно

*) На схеме механизма кинематические пары и особые точки обозначают прописными (большими) буквами, а скорость и ускорение этих точек имеют индексы в виде строчных (малых) буквах

**) Отрезок, отмеряемый с плана скорости или ускорения, будем изображать в круглых скобках.

Теперь, зная скорости точек, можно найти угловые скорости звеньев. Угловая скорость

первого звена задана. Угловая скорость второго звена (ВС) равна и направлена по часовой стрелке. Это направление определено по скорости точки С относительно точки В. По первому уравнению системы (6.1) вектор (pc) на плане скоростей равен сумме векторов (pb) и (bc), т.е. вектор (bc) направлен от точкиbк точке с. Переносим этот вектор в точку С на схеме механизма рис. 9 и видим, что он стремится повернуть звено ВС относительно точки В по часовой стрелке.

Угловая скорость третьего звена (СD)и направлена против часовой стрелки, т.к. скорость точки С относительно точкиDнаправлена вниз (см. план скоростей рис. 11) и стремится повернуть звено (рис. 9) против часовой стрелки.

Скорость любой точки звена СDравна произведению угловой скоростина расстояние этой точки от точкиD. Т.е. скорость точки Е можно найти из подобия: точкаена плане скоростей должна делить отрезок (cd) в таком же отношении, как точка Е делит звеноCDна схеме механизма и.

Теперь можем перейти к следующей структурной группе, состоящей из звеньев 4 (EF) и 5 (ползун). Здесь достаточно одного векторного уравнения (6.2) движения точкиFотносительно точки Е, т.к. известно направление движения связанной с ползуном вращательной парыF: параллельно направляющей, т.е. вертикально. Скорость точки Е уже найдена, а скорость точкиFотносительно точкиEизвестна по направлению: перпендикулярноFE.

(6.2)

Строим это уравнение (рис. 11). Через полюс p, т.к. направляющая ползуна неподвижна, проводим вертикальную линию, а через точкуенаправление относительной скорости точкиFотносительно Е перпендикулярноFE. Пересечение этой линии с вертикалью дает решение уравнения (6.2): положение точки f и ее скорость вектор (pf), численно равный

.

Скорость точки Fотносительно точки Е направлена вправо, т. к. отрезок (pf) равен сумме отрезков (pе) и (еf). Поэтому угловая скорость четвертого звена направлена против часовой стрелки. Т.е., вектор (ef) с плана скоростей прикладываем к точкеFна схеме механизма (рис. 9) и смотрим, что относительно точки Е он стремится повернуть звеноEFпротив часовой стрелки. Значение угловой скорости звена ЕFравно

.

Построение плана скоростей завершено. Аналогично строятся планы скоростей для остальных 11 положений механизма.