
книги из ГПНТБ / Теория автоматического регулирования и управления учеб. пособие
.pdf-59 -
данной системе все элементы, кроме объекта регулирования( можно считать безынерционными (усилительными) звеньями, но в отчете это необходимо обосновать.
При динамическом анализе САР нелинейные уравнения эле ментов необходимо линеаризовать. После лин..аризации уравне ния записывают в операторной фо se и, принимая базовые зна чения, переходят к уравнениям в относительных единицах.
За д а н и е
1.Составить функциональную схему САР.
2.Получить у преподавателя исходные данные и настро
ить регулятор |
на |
заданный уровень HQ. |
|
|
Н я£(0р). |
3. Снять |
статическую характеристику |
системы |
|||
По полученной характеристике определить: |
а) |
наибольшую аб |
|||
солютную ошибку |
Д Н в зоне регулирования; |
б) |
относи - |
||
тельную статическую ошибку |
|
|
|
Снять экспериментально переходный процесс САР, гра фически определить постоянную времени системы.
5.Аналитически рассчитать и построить статические ха рактеристики отдельных элементов.
6.По расчетным статическим характеристикам графическим методом определить результирующую статическую характеристику
системы и сравнить ее с экспериментальной.
?. Аналитически рассчитать статическую ошибку регулиро
вания САР в рабочей точке (а). |
|
|
|
8. |
Составить дифференциальные |
уравнения^ отдельных |
эле - |
ментов |
системы, выражая их входные |
и выходные величины |
в от |
носительных единицах и записать их в операторной форме.
9.Написать дифференциальное уравнение сиетемы.-
10.Составить структурные схемы элементов и системы.
11.Определить передаточные функции элементов разомкну - той и замкнутой систем.
12.Объяснить физический смысл постоянной времени объек та регулирования и системы и сравнить расчетную постоянную
- ьо -
времени о экспериментальной. 13, Сделать заключение.
Контрольные вопросы
1.Расскажите о порядке составления дифференциальных урав нений элементов САР.
2. Приведите правила преобразования структурных схем САР.
3.Объясните . порядок получения статической характеристи ки системы по известным статическим характеристикам его элементов.
А. Как по передаточной функции определить статическую ошиб ку регулирования системы?
5.Применение разложения в степенной ряд Тейлора при линеари зации.
6. Определение эквивалентных передаточных функций соединений элементов:
а) последовательного; б) с обратной связью.
7. Выразите входные и выходные величины дифференциальных/ уравнений в относительных единицах.
Ли т е р а т у р а
I..Иващенко Н.И. Автоматическое регулирование, ыашгиз, IS62,
стр. 235-240, 267-272, 320-325', 445-446.
2. Красовский А.А., Поспелов Г.С. Основы автоматики и техни ческой кибернетики. М., Госзнергоиздат, 1962, стр. 27-40, 60-63, X74-I77.
- 61 -
ЛАБОРАТОРНАЯ РАБОТА Ш5
ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ СТАТИЧЕСКИХ ХдРАХГЕРИСТИК СИСТЕМЫ АВТОМАТИЧЕСКОГО РЕШаРОйАНйЯ НАПРЯЖЕНИЯ ГЕНЕРАТОРА ПОСТОЯННОГО ТОКА
Целью лабораторной работы является изучение принципа действия угольного регулятора напряжения, эксперименталь - ное исследование статических характеристик объекта регули рования, элементов регулятора и системы автоматического ре
гулирования в целом. |
|
|
Лабораторная установка позволяет ознакомить студентов |
||
■с методами исследования систем |
автоматического регулирова |
|
ния в |
статическом режиме по экспериментально снятым стати - |
|
о ческим |
характеристикам элементов |
системы. |
|
Теоретическое |
• |
|
введение |
|
|
' Принцип действия угольного регулятора |
Принцип действия угольного регулятора основан на измене нии сопротивления угольного столба ( включенного в цепь обмот ки возбуждения генератора) в зависимости от изменения тока электромагнита. Покажем это на примере принципиальной электри
ческой |
схемы |
рис. 5-1 |
и кинематической схемы угольного регу |
|
лятора |
(рис. |
5-2). |
режиме ( IH = C onst ) все координаты |
|
В |
установившемся |
|||
системы (т .е . |
входные |
и выходные величины элементов) |
имеют ус |
|
тановившиеся |
значения. При этом силы, действующие на |
якорь |
электромагнита, находятся в равновесии. Следовательно,
F пр = F ЭЛ + F ОТ |
(5-1) |
- 62
Рис, 5 - 1 ,
Ka схеме рис. 5-1 обозначено:
Г - генератор - объект управления, ЗМ - электромагнит - чувствительный (измерительный) элемент,
Ry - задающий элемент,
RCt “ сопротивление угольного столба, Тос - стабилизирующий трансформатор -
элемент гибкой обратной связи, Йи - сопротивление нагрузки, СО - скорость вращения нала якоря ге
нератора..
Установившийся зазор " & " обусловливает сопротивление угольного столба, обеспечивающее величину тока обмотки воз - буадения генератора, соответствующую установившемуся напря - жению генератора при данном токе нагрузке.
При изменении тока нагрузки (например,увеличении) напряже
ние генератора понижается. Следовательно, |
ток электромагнита |
||
и сила электромагнита |
соответственно |
уменьшатся. Это приводит |
|
к нарушению равенства |
(5-1). Эазор " |
d |
« увеличивается, |
якорь сжимает шайбы угольного столба, уменьшая его сопротивле
ние. Ток возбуждения генератора .увеличивается и восстанавлива ет напряжение генератора.
63 -
На схеме рис. 5-2 обозначено:
1 - обмотка электромагнита,
2 - сердечник электромагнита,
3 - пружина якоря,
k - якорь электромагнита, 5 - угольный столб.
Одновременно с изменением тока возбуждения изменяется ток первичной обмотки стабилизирующего трансформатора. Это вы зывает наведение э .д .с . во вторичной обмотке, включенной в цепь последовательно с электромагнитом. Включение произведено таким образом, что наведенная э .д .с . действует против измене ния тока электромагнита, препятствуя быстрому его изменению.
Это обеспечивает более плавный переходной процесс в цепи элект ромагнита, и , следовательно, в системе. В этом состоит стаби лизирующее действие трансформатора в переходном режиме.
По окончании переходного процесса все координаты системы снова принимают установившиеся значения. Но равны ли новые ус тановившиеся значения исходным? Ответить на этот вопрос можно, . рассмотрев принцип действия системы, обращая внимание не на взаимодействие элементов, а на изменение соответствующих коор динат, направленных на стабилизацию выходной координаты систе мы. Рассмотрим изменение напряжения генератора. Ранее установле
но,что при увеличении тока нагрузки генератора,как сказано выие,~ в первый момент напряжение генератора понижается.Действие регул
тора увеличивал ток возбуждения, восстанавливая напряже ~ нив генератора. Но может ли регулятор обеспечить ь новей установившемся режиме напряжение генератора, равнее исход - ному? Длл ответа на поставленный вопрос рассмотрим, кая дол жен измениться ток электромагнита, чтобы увеличился ток возбуждения. Из принципа действия регулятора (см. рис. 5-2) вытекает, что ток электромагнита должен уменьшиться. 3 слу чае неизменных параметров цепи электромагнита, это возможно только при уменьшении напряжения генератора.
Таким образом,, для того, чтобы в новом установившемся режиме ток возбуждения был больше, что необходимо для ком - пенсации действия тока нагрузки, напряжение 'генератора долж но быть меньше. Это говорит о том, что установившееся значе ние регулируемой величины зависит от установившегося значе - ния возмущающего воздействия. Следовательно, рассматриваемая система относится к классу статических систем.
Кроме того, можно заметить, что регулирующее воздействие на объект управления, компенсирующее возмущающее действие, пропорционально отклонению напряжения генератора от заданного значения. Другими словами, в системе заложен принцип работы по отклонению (принцип Л.И.Ползунова). Рабочей информацией яв ляется отклонение регулируемой величины, следовательно, дан - ная система относится к классу замкнутых систем стабилизации.
Статика угольного регулятора
Статизм системы зависит только от настройки регулятора. Покажем это на примере угольного регулятора (рис. 5-2). На якорь электромагнита действуют три силы:
/ч> - сила электромагнита; гпр- сила пружины;
ГСг - сила реакции угольного столба.
Зависимость сил от зазора между якорем и сердечником электромагнита " $ " представлена на рис. 5- 3.
а) Зависимость силы электромагнита от зазора:
б) Зависимость силы пружины и силы реакции угодьного отолба от зазора:
- 65 -
|
Силы |
Fnp |
и |
FCT могут бить сведены к |
одной механической |
|||
силе |
f |
м |
= F |
па |
- F с,г • |
Эта зависимость |
приведена на рис. |
|
5-3 |
б ). |
|
|
1 |
|
|
|
|
|
Процесс регулирования зависит от.характера изменения сил |
|||||||
Р9 и Fh . |
Равновесие якоря |
возможно только |
при |
F9 = FH . При |
||||
этом |
определяющей |
силой является FM , так |
как |
она задается |
при настройке регулятора. Если в установившемся |
рениые зазор |
|||
между якорем и сердечником |
электромагнита |
имеет |
значение |
" < л " , |
то характеристики сил могут |
быть взаиморасполонены тремд спо |
|||
собами, представленными на |
рис. 5-4! |
- --------------- . |
_____ |
Рис. 5-4.
о
-66 -
а) Наклон характеристики механической силы больше накло на характеристики аилы электромагнита;
б) Наклон характеристики механической силы меньше накло на характеристики силы электромагнита-;
в) Наклон характеристики механической силы ранен наклону
характеристики силы электромагнита. |
При этом принимаем, что |
|||||||||
настройка |
регулятора произведена |
так, что в случае " |
а |
" |
и |
|||||
"б" |
характеристики |
пересекаются, |
при |
значении зазора |
" |
(й |
" |
|||
а в |
случае "в" - |
(0О |
совпадает |
с |
Fgo |
( F30 ~ сила |
элект |
|||
ромагнита |
при токе |
). |
|
|
|
|
|
|
||
|
.Рассмотрим работу регулятора |
с |
учетом |
характера |
измене |
|||||
ния |
сил, |
действующих на |
якорь электромагнита. |
|
|
|
При изменении тока нагрузки (например, уменьшении) напря жение генератора возрастает за счет уменьшения потерь на ак - тивном сопротивлении якоря генератора, ото приводит к увеличе ния тока электромагнита регулятора и, следовательно, к умень шению зазора между якорем и сердечником электромагнита и соот ветствующему увеличению сопротивления угольного столба. Изме нение указанных величин будет происходить до тех пор, пока не наступит равновесие сил F9 *FM . При этом влияние измене ния тока нагрузки на напряжение генератора будет различным в зависимости от взаимного расположения сил Fg и FM
Рассмотрим это на примере рис. 5-4 при уменьшении тока на грузки генератора. Равновесие сил, как следует из сказанного
выше, наступит при зазоре |
. При этом в случае |
"с" ток |
||||
электромагнита будет |
больше 190 |
(пунктирная кривая), в слу |
||||
чае "б" - |
меньше, а |
в случае "в" |
равновесие |
сил наступит |
при |
|
том не токе |
электромагнита |
|
Fm |
|
|
|
Следовательно, если наклон характеристики |
больше |
на |
||||
клона характеристики |
Fg (случай |
"а"), то при уменьшений на |
грузки напряжение генератора повысится. Это соответствует по ложительному статизму регулятора (рис. 5-5а).
Если наклон характеристики FM меньше.наклона характери стики Fe «(.случай "б"), то при уменьшении тока нагрузки на пряжение генератора понижается. Это соответствует отрицатель ному статизму регулятора (рис. 5-56).
Если характеристики FM и Гв идентичны (рис. 5-4в), то напряжение генератора не изменяется, что соответствует астати
- 67 -
ческому режиму работа регулятора ( рис. 5 - 5в).
Динамика угольного регулятора
Динамика системы автоматического регулирования описыва
ется, дифференциальными, интегральными, разностными |
или ал |
|||
гебраическими уравнениями. Вид уравнений |
зависит |
от |
харак - |
|
тера физических процессов, протекающих в |
системе, |
и типа |
||
элементов, из которых состоит системе. |
|
|
|
|
В частном случае, когда система автоматического регули |
||||
рования состоит из инерционных линейных или |
линеаризуемых |
|||
элементов с сосредоточнными параметрами, |
не |
изменяющимися |
во времени, динамика системы описывается линейными дифферен циальными уравнениями с постоянными коэффициентами.
Порядок составления и линеаризации дифференциальных уравнений элементов и систем достаточно полно рассмотрен в литературе / Л -1,2,3/.
В порядке примера составим дифференциальное уравнение одного из элементов исследуемого регулятора - электромагнита. Эквивалентная схема цепи электромагнита представлена на рис. 5-6.
Рис. 5-6.
Не основании эквивалентной схемы для обмотки электромагни та запишем дифференциальное уравнение
о
68 -
|
|
|
ч |
|
|
|
W9- |
+ (# » + Я » )‘э - U r . |
(5-2) |
||
где |
количество витков обмотки электромагнита; |
||||
|
Фэ - магнитный поток; |
|
|
||
|
R9 - зктивное |
сопротивление обмотки электромаг |
|||
|
|
нита; |
|
|
|
|
Ry - сопротивление уставки; |
|
|
||
|
i9 - |
ток электромагнита; |
|
|
|
|
Ur - напряжение генератора. |
|
|
||
|
Ф3= Ф9(1а.$ ) |
- есть сложная |
нелинейная функция то |
||
ка электромагнита и зазора. |
|
|
|||
|
Общий вид |
зависимостей представлен |
на рис'. |
5-7. |
Следовательно, уравнение (5-2) необходимо линеаризовать. В зависимости от вида линеаризуемой функции и способа ее
задания могут быть применены три способа линеаризации. Первый способ основывается на применении аналитического
дифференцирования функции и определения ее полного дифферен циала. Применяется в случае задания функции аналитическим выражением, имеющим сложный вид.
Второй способ основывается на применении графического дифференцирования при применении полного дифференциала функ ции. Применяется, когда функция задана графически.