
- •Процессоры персональных компьютеров
- •Компьютеры, не совместимые с ibm pc
- •Структурная схема микропроцессора
- •Взаимодействие функциональных блоков процессора при выполнении команд
- •Форматы команд
- •Адресация данных
- •Адресация команд
- •Типы машинных команд
- •Классификация процессоров по системе команд
- •Совмещение выполнения операций во времени
- •Современные процессоры
- •Многоядерные процессоры
- •Технология Hyper-Threading
- •Эра многоядерных энергоэффективных процессоров
- •Негативные последствия увеличения тактовой частоты
- •Энергетическая эффективность процессора
- •Преимущества многоядерной архитектуры
Негативные последствия увеличения тактовой частоты
Как мы уже отмечали, микроархитектура Intel NetBurst, положенная в основу процессоров семейства Pentium 4, изначально разрабатывалась под возможность наращивания тактовой частоты. Первоначально (в процессорах на ядре с кодовым названием Northwood) длина конвейера составляла 20 ступеней, а впоследствии (в процессорах на ядре с кодовым названием Prescott) она была увеличена до 31 ступени. В результате за пять лет существования процессоров семейства Pentium 4 их тактовая частота была увеличена более чем в три раза. Стартовав с отметки чуть больше 1 ГГц, за пять лет она достигла 3,8 ГГц.
Казалось бы, если масштабирование тактовой частоты представляет собой довольно эффективное средство для увеличения производительности процессоров, что мешает и дальше двигаться в этом же направлении? Почему можно утверждать, что наращивание тактовой частоты процессоров как доминирующий способ увеличения производительности — это тупик?
Дело в том, что увеличение тактовой частоты процессора приводит к росту его энергопотребления и, как следствие, к повышению тепловыделения.
Зависимость потребляемой процессором мощности от его тактовой частоты можно представить следующей формулой:
Power = CU2F.
То есть мощность, потребляемая процессором, прямо пропорциональна тактовой частоте (F), квадрату напряжения питания процессора (U2) и его так называемой динамической емкости (C). Учитывая, что сама тактовая частота обусловлена напряжением питания процессора, потребляемая мощность нелинейным образом зависит от частоты процессора. Соответственно получаем нелинейную связь между производительностью процессора и потребляемой им мощностью.
Эмпирическим путем установлено, что при увеличении (разгоне) тактовой частоты на 20% производительность процессора возрастает на 13%. Дело в том, что, несмотря на теоретическую прямолинейную зависимость между производительностью процессора и его тактовой частотой, в реальности она не является строго пропорциональной. При этом потребляемая процессором мощность возрастает на 73%! При уменьшении тактовой частоты процессора на 20% производительность уменьшается на 13%, а потребляемая мощность — на 49%! Этот пример наглядно демонстрирует, что увеличение тактовой частоты приводит к явному дисбалансу между приростом производительности и потребляемой мощностью.
В погоне за производительностью, которая, как уже отмечалось, в семействе Intel Pentium 4 обеспечивалась главным образом увеличением тактовой частоты, последние версии процессоров на архитектуре NetBurst достигли уровня энергопотребления в 130 Вт. Казалось бы, ничего страшного — ведь это соответствует одной-двум лампам накаливания и любая люстра в квартире потребляет больше электроэнергии. Однако проблема заключается в том, что эта мощность выделяется процессором в виде тепла, что приводит к его нагреванию. И если для лампы накаливания такой нагрев не критичен, то для процессора все не так просто. Процессоры настольных ПК могут сохранять нормальную работоспособность вплоть до температуры 70 °С, а это означает, что при столь высоком энергопотреблении необходимо обеспечить эффективный отвод тепла, для чего используются процессорные кулеры. Проблема, однако, заключается в том, что современные воздушные процессорные кулеры обеспечивают эффективное охлаждение процессоров при энергопотреблении только до 100 Вт — лишь немногие мощные устройства позволяют охлаждать процессоры с более высоким энергопотреблением, причем эти кулеры довольно шумные.
С учетом того, что энергопотребление десктопных процессоров семейства Intel Pentium 4 уже достигло своего критического значения, дальнейший рост их производительности просто невозможен в рамках существующей архитектуры. Можно говорить, что архитектура NetBurst полностью исчерпала свои потенциальные возможности и создала своего рода тупиковую ситуацию в дальнейшем развитии процессоров.
Поэтому основная задача, которая ставится при конструировании современных процессоров, — достижение не просто максимально возможной производительности любыми средствами, а высокого уровня производительности при обеспечении энергопотребления на приемлемом уровне. В связи с этим необходимо учитывать еще одну важную характеристику процессора — энергетическую эффективность.