Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
128
Добавлен:
23.02.2015
Размер:
291.84 Кб
Скачать

1.3 Гармоническая волна и ее параметры

Гармоническая волна – волна, изменяющаяся во времени по гармоническому (синусоидальному) закону. Для этой волны также употребляется термин монохроматическая (одноцветная) волна, заимствованный из оптики. Любой волновой процесс можно представить с помощью преобразований Фурье через гармонические волны.

Кратко остановимся на основных определениях и понятиях гармонической волны. Уравнения плоской гармонической волны, распространяющейся, например, вдоль оси zв среде без потерь записывается в следующем виде

(1.1)

Под величиной A понимается физическая величина, определяющая волновой процесс. Максимальное значение этой величины называется амплитудой, обозначенной в (1.1) через. Размерность амплитуды определяется природой волнового процесса. Например, в звуковых волнах амплитуда измеряется в единицах давления паскалях (Па), в электромагнитных волнах амплитуда напряженности электрического поля измеряется в вольтах на метр (В/м), а магнитного поля – в амперах на метр (А/м).

Выражение, стоящее в скобках (1.1), называется фазой колебания, через которую определяется значение физической величины в данный момент времени и в данной точке пространства. Константа j0называется начальной фазой, использование которой имеет смысл при сравнении двух и более волн одной частоты в данной точке пространства и в фиксированный момент времени. Круговая частотаwсвязана с частотойf(число колебаний в единицу времени) соотношением

(1.2)

Частота wизмеряется в радианах в секунду, частотаfв герцах (1Гц – одно колебание в секунду). При известной частотеf период колебания находится из соотношения

. (1.3)

Из периодичности волнового процесса в пространстве определяется длина волны

. (1.4)

Таким образом, длина волны – пространственный интервал, по прохождению которого фаза волны меняется на вдоль направления распространения. Число длин волн, укладывающихся на расстоянииметров, называется волновым числом и обозначаетсяk.

Поверхность, на которой волновой процесс имеет одинаковую фазу колебания, называется поверхностью равных фаз или фронтом волны. По форме фронта волны можно выделить плоские, цилиндрические и сферические волны. Поверхность, на которой амплитуда волнового процесса постоянна, называется поверхностью равных амплитуд. Волна называется однородной, если у нее поверхности равных амплитуд и равных фаз совпадают, то есть на поверхности фронта не меняется амплитуда волнового процесса. В неоднородной волне амплитуда на поверхности фронта изменяется.

Плотность потока энергии (или интенсивность) волны – это энергия, переносимая волной через единицу перпендикулярно ориентированной поверхности за единицу времени. Плотность потока энергии пропорциональна квадратуре амплитуды волны

, (1.5)

где p– коэффициент пропорциональности, зависящий от свойств среды и типа волны;

– единичный вектор, показывающий направление распространения энергии.

Вектор плотности потока энергии в единицу времени (плотности потока мощности) принято называть вектором Умова-Пойнтинга.

Распространение волны происходит в направлении, перпендикулярном поверхности фронта волны. Плоская волна идет в одном направлении по нормали к ее фронту. Цилиндрическая волна расходится по радиусу в плоскости, перпендикулярной оси цилиндра. Сферическая волна расходится по радиусу перпендикулярно сферическому фронту. Элемент поверхности цилиндрического фронта возрастает прямо пропорционально расстоянию, при этом плотность потока мощности убывает обратно пропорционально расстоянию, а амплитуда цилиндрической волны убывает обратно пропорционально корню квадратному из расстояния. Элемент поверхности сферического фронтавозрастает пропорционально квадрату расстояния, плотность потока мощности уменьшается обратно пропорционально квадрату расстояния, а амплитуда сферической волны убывает обратно пропорционально расстоянию. В среде с потерями распространяющиеся волны теряют часть своей энергии и их амплитуды убывают по экспоненциальному закону вдоль направления распространения.

Соседние файлы в папке Конспект лекций ТВП ЗФО 2014