
- •Схемотехника эвм
- •Часть 2
- •Содержание
- •8. Регистры
- •8.1. Назначение и классификация регистров
- •8.2. Регистры памяти
- •8.3. Буферы данных
- •8.4. Регистры сдвига
- •Кольцевые счетчики
- •9. Мультиплексоры и демультиплексоры
- •9.1. Общие сведения
- •9.2. Мультиплексоры
- •9.3. Демультиплексоры
- •10. Шифраторы и дешифраторы
- •10.1. Шифраторы
- •10.2. Дешифраторы
- •11. Арифметические устройства
- •11.1. Сумматоры
- •Четвертьсумматор
- •Полусумматор
- •Полный одноразрядный двоичный сумматор
- •Сумматоры с последовательным переносом
- •11.2. Инкрементор
- •11.3. Вычитатели (субтракторы)
- •11.4. Компараторы
- •Основные характеристики компараторов
- •Компараторы аналоговых сигналов
- •Компараторы цифровых сигналов
- •Компаратор на базе сумматора
- •11.5. Арифметико-логические устройства
- •12. Импульсные устройства на имс
- •12.1. Формирователи импульсов
- •12.2. Схемы нормализации импульсов
- •12.3. Схемы укорачивания импульсов
- •12.4. Схемы задержки импульса
- •12.5. Одновибраторы
- •12.6. Генераторы тактовой частоты
- •13. Запоминающие устройства
- •13.1. Общие характеристики устройств
- •13.2. Запоминающие элементы постоянных зу
- •13.3. Оперативные запоминающие устройства
- •13.3.1. Динамические зу
- •13.3.2. Статические зу
- •14. Аналого-цифровые и цифро-аналоговые преобразователи
- •14.1. Общие сведения
- •14.2. Цифро-аналоговые преобразователи
- •14.3. Аналого-цифровые преобразователи
- •14.3.1. Характеристики и параметры ацп
- •14.3.2. Ацп последовательного счета
- •14.3.3. Параллельный ацп
- •14.3.4. Сигма-дельта ацп
- •Заключение
- •Библиографический список
- •Приложение 1 Перечень стандартов
- •Основные стандарты ескд
- •Система технологической документации
- •Стандарты системы информационно-библиографической документации
- •Система стандартов по безопасности труда
- •Разработка и постановка продукции на производство
- •Система стандартов программной документации
- •Основополагающие стандарты гсп
- •Приложение 2
- •Цифровых устройств
9.3. Демультиплексоры
Демультиплексоры (DMX) в функциональном отношении противоположны мультиплексорам. В них сигналы с одного информационного входа распределяются в необходимой последовательности по нескольким выходам, соответствующим кодам на адресных входах. При n-разрядном адресе DMX может иметь 2n выходов.
Принцип работы DMX поясняет рис. 9.8, а. Здесь D – информационный вход, А – адресный вход. В зависимости от сигнала А (0 или 1) по адресному входу открыт верхний или нижний элемент И, а через него сигнал D подключается к выходу F0 либо к выходу F1.
Демультиплексор вида 1:4 представлен на рис. 9.8, б, а на рис.9.8, в –условное графическое обозначение. Здесь два адресных входа – А и В, информационный вход – D и вход V – разрешающий. Если выходов недостаточно, то, как и при построении мультиплексоров, используют каскадирование.
а б в
Рис. 9.8. Демультиплексоры 1:2 (а) и 1:4 с разрешающим входом (б и в)
Демультиплексоры обозначаются буквами ИД, следующими непосредственно за номером серии микросхем. Например, микросхема К155ИД3 является демультиплексором 1:16 или дешифратором 4:16, выполненным по технологии ТТЛ, а микросхема К564ИД1 является демультиплексором 1:8, выполненным по технологии КМОП. Эта микросхема является также трехразрядным дешифратором с разрешающим входом или преобразователем двоично-десятичного кода в десятичный или в восьмеричный.
Демультиплексоры, как и мультиплексоры, применяют для коммутации не только отдельных линий, но и для коммутации шин. Такую операцию называют демультиплексированием шин и реализуют ее обычно на основе демультиплексоров одиночных линий. Количество и тип демультиплексоров определяются числом коммутируемых шин (количеством приемных устройств) и их разрядностью. Адресные входы всех демультиплексоров объединяются параллельно. Схема демультиплексора шин приведена на рис. 9.9. Здесь в зависимости от комбинации адресных сигналов на линиях А0–А1 информация с входной шины D0–D3 коммутируется на выходные шины 0–3, которые подключаются к входам соответствующих приемников информации.
Рис. 9.9. Демультиплексорование шины на четыре приемника
Совместное применение мультиплексоров и демультиплексоров позволяет расширить возможности их использования в цифровых устройствах. На рис. 9.10 показано объединение мультиплексора и демультиплексора, при котором в зависимости от адресов А1, А2 и А3, А4 можно передать информацию с любого из входов D0–D3 на любой из выходов Y0–Y3.
Рис. 9.10. Совместное применение мультиплексора и демультиплексора
Более широкие функциональные возможности имеет программируемый матричный коммутатор КМ1509КП1 с полем 16х16, который предназначен для использования в системах связи, ЭВМ и радиоэлектронной аппаратуре широкого применения [10]. Микросхема представляет собой однонаправленный коммутатор с программной настройкой связей, осуществляемой перед коммутацией.