
- •5. Преобразование непрерывных сигналов в дискретные
- •5.1. Преимущества цифровой формы пердставления сигналов
- •5.2. Общая постановка задачи дискретизации
- •5.3. Способы восстановления непрерывного сигнала
- •5.4. Критерии качества восстановления
- •5.5. Методы дискретизации посредством выборок
- •5.6. Равномерная дискретизация. Теорема Котельникова
- •5.6.1. Дискретизация по частотному критерию
- •5.6.2. Теорема Котельникова
- •5.7. Теоретические и практические аспекты использования теоремы Котельникова
- •5.8. Дискретизация по критерию наибольшего отклонения
- •5.9. Дискретизация с использованием экстраполирующих многочленов Тейлора
- •5.10. Адаптивная дискретизация
- •5.11. Квантование сигналов
- •5.12. Квантование сигнала при наличии помех
- •Список литературы
- •Оглавление
5. Преобразование непрерывных сигналов в дискретные
5.1. Преимущества цифровой формы пердставления сигналов
В любую систему информация поступает в виде сигналов. Различные параметры физических процессов с помощью датчиков обычно преобразуются в электрические сигналы. Как правило, ими являются непрерывно изменяющиеся ток или напряжение, но возможно поступление и импульсных сигналов, как, например, в радиолокации. Печатный текст отображается буквами, цифрами и другими знаками.
Хотя поступающую информацию можно хранить, передавать и обрабатывать как в виде непрерывных, так и в виде дискретных сигналов, на современном этапе развития информационной техники предпочтение отдается дискретным сигналам, поэтому сигналы, как правило, преобразуются в дискретные. С этой целью каждый непрерывный сигнал подвергается операциям квантования по времени (дискретизации) и по уровню.
Под дискретизациейподразумевают преобразование функции непрерывного времени в функцию дискретного времени, представляемую совокупностью величин, называемых координатами, по значениям которых исходная непрерывная функция может быть восстановлена с заданной точностью. Роль координат часто выполняют мгновенные значения функции, отсчитанные в определенные моменты времени.
Подквантованиемподразумевают
преобразование некоторой величины с
непрерывной шкалой значений в величину,
имеющую дискретную шкалу значений. Оно
сводится к замене любого мгновенного
значения одним из конечного множества
разрешенных значений, называемыхуровнями квантования.
Изменение вида сигнала u(t) (рис.5.1,а) в результате проведения операции дискретизации показано на рис. 5.1,б, а в результате совместного проведения операций дискретизации и квантования — на рис. 5.1, в.
Ч
Рис.5.1
Цифровая форма представления сигнала u(t) (рис. 5.1,а) показана на рис. 5.1,г. Для восьми уровней достаточно трех двоичных разрядов. Импульсы старших разрядов расположены крайними справа.
Причины перехода к дискретному и цифровому выражению информации заключаются в следующем.
Для конкретных задач управления или исследования интересующего нас объекта обычно требуется значительно меньше информации, чем ее поступает с датчиков в виде сигналов, изменяющихся во времени непрерывно. Учет априорных сведений об этих сигналах и целях их получения позволяет ограничиться отсчетами, взятыми через определенные моменты времени.
При неизбежных флуктуациях во времени интересующих нас параметров и конечной погрешности средств измерения информация о величине сигнала в каждый момент отсчета всегда ограничена, что и выражается в конечном числе уровней квантования. Кроме того, специфика решаемых в системе задач часто такова, что целесообразно ограничиться значительно меньшим числом уровней, чем следует из указанных выше ограничений.
Во многих случаях информация извлекается и передается с целью дальнейшей обработки средствами цифровой техники, в первую очередь ЭВМ и микропроцессорами. Рациональное выполнение операций дискретизации и квантования при этом приводит к значительному экономическому эффекту как за счет снижения затрат на хранение и обработку получаемой информации, так и вследствие сокращения времени обработки информации, что ведет к улучшению качества управления.
При передаче и обработке информации в цифровой технике существует принципиальная возможность снижения вероятности получения ошибочного результата до весьма малых значений. Она возникает потому, что при использовании дискретных сигналов, во-первых, применимы такие методы кодирования, которые обеспечивают обнаружение и исправление ошибок, а во-вторых, можно избежать свойственного аналоговым сигналам эффекта накопления искажений в процессе их передачи и обработки, поскольку квантованный сигнал легко восстановить до первоначального уровня всякий раз, когда величина накопленных искажений приблизится к половине кванта. Практическая реализация указанных методов наиболее эффективна при минимальном числе уровней, равном двум.
Выражение информации в цифровой форме облегчает унификацию операций ее преобразования на всех этапах обращения. Массовость изготовления типовых узлов и блоков, простота их настройки, отсутствие необходимости регулировки в процессе эксплуатации позволяют, в свою очередь, улучшить такие важнейшие технико-экономические показатели средств цифровой техники, как стоимость изготовления и эксплуатации, а также надежность.
Низкая стоимость и высокая надежность больших интегральных схем, естественно, являются мощными стимулами дальнейшего расширения областей использования цифровых сигналов.
Мы ограничимся рассмотрением методов преобразования непрерывных сигналов в дискретные.