
- •Cтруктуры данных и алгоритмы
- •Понятие структур данных и алгоритмов
- •1.2. Алгоритм Евклида
- •1.3. Классификация структур данных
- •1.4. Операции над структурами данных
- •1.5. Структурность данных и технология программирования
- •2. Простые структуры данных
- •2.1. Числовые типы
- •2.1.1. Целые типы
- •2.1.1.1. Перевод чисел из одной системы счисления в другую
- •2.1.2. Вещественные типы
- •2.1.3. Десятичные типы
- •2.1.4. Операции над числовыми типами
- •2.2. Битовые типы
- •2.3. Логический тип
- •2.4. Символьный тип
- •2.5. Перечислимый тип
- •2.6. Интервальный тип языкаPascal
- •2.7. Указатели
- •2.7.1. Физическая структура указателя
- •2.7.2. Представление указателей в языках программирования
- •2.7.3. Операции над указателями
- •3. Статические структуры данных
- •3.1. Векторы
- •3.2. Массивы
- •3.2.1. Логическая структура
- •3.2.2. Физическая структура
- •3.2.3. Операции
- •3.2.4. Адресация массивов с помощью векторов Айлиффа
- •3.2.5. Специальные массивы
- •3.3. Множества ( в языкеPascal )
- •3.3.1. Числовые множества
- •3.3.2. Символьные множества
- •3.3.3. Множество из элементов перечислимого типа
- •3.3.4. Множество от интервального типа
- •3.3.5. Операции над множествами
- •3.4. Записи
- •3.4.1. Логическое и машинное представление записей
- •3.4.2. Операции над записями
- •3.5. Записи с вариантами
- •3.6. Таблицы
- •3.7. Операции логического уровня над статическими структурами. Поиск
- •3.7.1. Последовательный или линейный поиск
- •3.7.2. Бинарный поиск
- •3.8. Операции логического уровня над статическими структурами. Сортировка
- •3.8.1. Сортировки выборкой
- •3.8.2. Сортировки включением
- •3.8.3. Сортировки распределением
- •3.9. Прямой доступ и хеширование
- •3.9.1. Таблицы прямого доступа
- •3.9.2. Таблицы со справочниками
- •3.9.3. Хешированные таблицы и функции хеширования
- •3.9.4. Проблема коллизий в хешированных таблицах
- •Библиографический Список
- •Оглавление
3.7.2. Бинарный поиск
Другим относительно простым методом доступа к элементу является метод бинарного (дихотомического, двоичного) поиска, который выполняется в заведомо упорядоченной последовательности элементов. Записи в таблицу заносятся в лексикографическом (символьные ключи) или численно (числовые ключи) возрастающем порядке. Для достижения упорядоченности может быть использован какой-либо из методов сортировки (см. 3.8).
В рассматриваемом методе поиск отдельной записи с определенным значением ключа напоминает поиск фамилии в телефонном справочнике. Сначала приближенно определяется запись в середине таблицы и анализируется значение ее ключа. Если оно слишком велико, то анализируется значение ключа, соответствующего записи в середине первой половины таблицы, и указанная процедура повторяется в этой половине до тех пор, пока не будет найдена требуемая запись.
Если значение ключа слишком мало, испытывается ключ, соответствующий записи в середине второй половины таблицы, и процедура повторяется в этой половине. Этот процесс продолжается до тех пор, пока не будет найден требуемый ключ или не станет пустым интервал, в котором осуществляется поиск.
Для того чтобы найти нужную запись в таблице, в худшем случае требуется log2(N) сравнений. Это значительно лучше, чем при последовательном поиске.
Программная иллюстрация бинарного поиска в упорядоченном массиве приведена в следующем примере, где mas- исходный массив, key - ключ, который ищется; функция возвращает индекс найденного элемента или EMPTY - если элемент отсутствует в массиве.
{===== Программный пример 3.5 =====}
int BinSearch( int* mas, int key )
{
int first = 0, last = N-1; // начальные границы интервала
int i;
while(first <= last ){ // пока интервал поиска не равен 0
i = (first + last) / 2; // середина интервала
if( mas[i] == key ) return i; // ключ найден, возврат
else {
if( mas[i] < key )
first = i + 1;//поиск в правом подинтервале
else last = i - 1; // поиск в левом подинтервале
}
}
return EMPTY; // ключ не найден
}
Трассировка бинарного поиска ключа 275 в исходной последовательности:
75, 151, 203, 275, 318, 489, 524, 519, 647, 777
представлена в табл. 3.4.
Таблица 3.4
Итерация |
first |
last |
i |
K[i] |
1 2 3 4 |
0 0 2 3 |
9 3 3 3 |
4 1 2 3 |
318 151 203 275 |
Алгоритм бинарного поиска можно представить и несколько иначе, используя рекурсивное описание. В этом случае граничные индексы интервала firstиlastявляются параметрами алгоритма.
Рекурсивная процедура бинарного поиска представлена в программном примере 3.6. Для выполнения поиска необходимо при вызове процедуры задать значения ее формальных параметров firstиlast- 1 и N соответственно, гдеfirst,last- граничные индексы области поиска.
{===== Программный пример 3.6 =====}
int BinSearch( int* mas, int key, int first, int last )
{
if(first > last ) return EMPTY; // ключ не найден
int i = (first + last) / 2; // середина интервала
if( mas[i] == key ) return i; // ключ найден, возврат
else
{
if( mas[i] < key )
return BinSearch( mas, key,
i + 1, last ); // поиск в правом подинтервале
else return BinSearch( mas, key,
first, i - 1 );// поиск в левом подинтервале
}
}
Известно несколько модификаций алгоритма бинарного поиска, выполняемых на деревьях, которые будут рассмотрены в главе 5.