
- •Глава 1. Основы OpenGl 8
- •Введение
- •ОсновыOpenGl
- •Основные возможности
- •ИнтерфейсOpenGl
- •АрхитектураOpenGl
- •Синтаксис команд
- •Пример приложения
- •Контрольные вопросы:
- •Рисование геометрических объектов
- •Процесс обновления изображения
- •Вершины и примитивы
- •Положение вершины в пространстве
- •Цвет вершины
- •Нормаль
- •Операторные скобкиglBegin/glEnd
- •Дисплейные списки
- •Массивы вершин
- •Контрольные вопросы
- •Преобразования объектов
- •Работа с матрицами
- •Модельно-Видовые преобразования
- •Проекции
- •Область вывода
- •Контрольные вопросы
- •Материалы и освещение
- •Модель освещения
- •Спецификация материалов
- •Описание источников света
- •Создание эффекта тумана
- •Контрольные вопросы
- •Текстурирование
- •Подготовка текстуры
- •Наложение текстуры на объекты
- •Текстурные координаты
- •Контрольные вопросы
- •Операции с пикселями
- •Смешивание изображений. Прозрачность
- •Буфер-накопитель
- •Буфер маски
- •Управление растеризацией
- •Приемы работы сOpenGl
- •Устранение ступенчатости
- •Построение теней
- •Зеркальные отражения
- •Оптимизация программ
- •Организация приложения
- •Высокоуровневая оптимизация
- •Низкоуровневая оптимизация
- •Оптимизация вызовов OpenGl
- •Передача данных в OpenGl
- •Преобразования
- •Растеризация
- •Текстурирование
- •Очистка буферов
- •СтруктураGlut-приложения
- •Примитивы библиотекGlUиGlut
- •Настройка приложенийOpenGl
- •Демонстрационные программы
- •Пример 1: Простое glut-приложение
- •Пример 2: Модель освещения OpenGl
- •Пример 3: Текстурирование
- •Примеры практических заданий
- •Виртуальные часы
- •Интерактивный ландшафт
- •Литература
- •Предметный указатель
Контрольные вопросы
Для чего используются уровни детализации текстуры (mip-mapping)?
Операции с пикселями
После проведения всех операций по преобразованию координат вершин, вычисления цвета и т.п., OpenGLпереходит к этапурастеризации, на котором происходит растеризация всех примитивов, наложение текстуры, наложение эффекта тумана. Для каждого примитива результатом этого процесса является занимаемая им в буфере кадра область, каждому пикселю этой области приписывается цвет и значение глубины.
OpenGLиспользует эту информацию, чтобы записать обновленные данные в буфер кадра. Для этогоOpenGLимеет не только отдельный конвейер обработки пикселей, но и несколько дополнительных буферов различного назначения. Это позволяет программисту гибко контролировать процесс визуализации на самом низком уровне.
Графическая библиотека OpenGLподдерживает работу со следующими буферами:
несколько буферов цвета
буфер глубины
буфер-накопитель (аккумулятор)
буфер маски
Группа буферов цвета включает буфер кадра, но таких буферов может быть несколько. При использовании двойной буферизации говорят о рабочем (front) и фоновом (back) буферах. Как правило, в фоновом буфере программа создает изображение, которое затем разом копируется в рабочий буфер. На экране может появиться информация только из буферов цвета.
Буфер глубины используется для удаления невидимых поверхностей и прямая работа с ним требуется крайне редко.
Буфер-накопитель можно применять для различных операций. Более подробно работа с ним описана в разделе 6.2.
Буфер маски используется для формирования пиксельных масок (трафаретов), служащих для вырезания из общего массива тех пикселей, которые следует вывести на экран. Буфер маски и работа с ним более подробно рассмотрены в разделах 6.3, 7.2 и 7.3.
Смешивание изображений. Прозрачность
Разнообразные прозрачные объекты – стекла, прозрачная посуда и т.д. часто встречаются в реальности, поэтому важно уметь создавать такие объекты в интерактивной графике. OpenGLпредоставляет программисту механизм работы с полупрозрачными объектами, который и будет кратко описан в этом разделе.
Прозрачность реализуется с помощью специального режима смешения цветов (blending). Алгоритм смешения комбинирует цвета так называемых входящих пикселей (т.е. «кандидатов» на помещение в буфер кадра) с цветами соответствующих пикселей, уже хранящихся в буфере. Для смешения используется четвертая компонента цвета – альфа-компонента, поэтому этот режим называют еще альфа-смешиванием. Программа может управлять интенсивностью альфа-компоненты точно так же, как и интенсивностью основных цветов, т.е. задавать значение интенсивности для каждого пикселя или каждой вершины примитива.
Режим включается с помощью команды glEnable(GL_BLEND).
Определить параметры смешения можно с помощью команды:
void glBlendFunc(enum src,enum dst)
Параметр srcопределяет, как получить коэффициентk1исходного цвета пикселя,adstзадает способ получения коэффициентаk2для цвета в буфере кадра. Для получения результирующего цвета используется следующая формула:res=сsrc*k1+cdst*k2, где сsrc – цвет исходного пикселя,cdst – цвет пикселя в буфере кадра (res,k1,k1, сsrc,cdst – четырехкомпонентныеRGBA-векторы).
Приведем наиболее часто используемые значения агрументов srcиdst.
GL_SRC_ALPHA k=(As,As,As,As)
GL_SRC_ONE_MINUS_ALPHA k=(1,1,1,1)-(As,As,As,As)
GL_DST_COLOR k=(Rd,Gd,Bd)
GL_ONE_MINUS_DST_COLOR k=(1,1,1,1)- (Rd,Gd,Bd,Аd)
GL_DST_ALPHA k=(Ad,Ad,Ad,Ad)
GL_DST_ONE_MINUS_ALPHA k=(1,1,1,1)-(Ad,Ad,Ad,Ad)
GL_SRC_COLOR k=(Rs,Gs,Bs)
GL_ONE_MINUS_SRC_COLOR k=(1,1,1,1)- (Rs,Gs,Bs,As)
Пример:
Предположим, мы хотим реализовать вывод прозрачных объектов. Коэффициент прозрачности задается альфа-компонентой цвета. Пусть 1 – непрозрачный объект; 0 – абсолютно прозрачный, т.е. невидимый. Для реализации служит следующий код:
glEnable(GL_BLEND);
glBlendFunc(GL_SRC_ALPHA,GL_SRC_ONE_MINUS_ALPHA);
Например, полупрозрачный треугольник можно задать следующим образом:
glColor3f(1.0, 0.0, 0.0, 0.5);
glBegin(GL_TRIANGLES);
glVertex3f(0.0, 0.0, 0.0);
glVertex3f(1.0, 0.0, 0.0);
glVertex3f(1.0, 1.0, 0.0);
glEnd();
Если в сцене есть несколько прозрачных объектов, которые могут перекрывать друг друга, корректный вывод можно гарантировать только в случае выполнения следующих условий:
Все прозрачные объекты выводятся после непрозрачных.
При выводе объекты с прозрачностью должны быть упорядочены по уменьшению глубины, т.е. выводиться, начиная с наиболее отдаленных от наблюдателя.
В OpenGL команды обрабатываются в порядке их поступления, поэтому для реализации перечисленных требований достаточно расставить в соответствующем порядке вызовы команд glVertex*(), но и это в общем случае нетривиально.