
- •Активные фильтры. Фильтры нижних частот
- •Общие сведения
- •Передаточная характеристика фильтра Баттерворта
- •Передаточная характеристика фильтров Чебышева
- •Фильтры нижних частот с многопетлевой обратной связью и бесконечным коэффициентом усиления (инвертирующее включение оу)
- •Фильтры нижних частот на инун (неинвертирующее включение оу)
- •Фильтры нижних частот нечетного порядка
- •Расчет фильтра нижних частот с многопетлевой обратной связью
- •Расчет фильтра нижних частот на инун
- •Расчет фильтра нижних частот нечетного порядка
Передаточная характеристика фильтров Чебышева
Фильтр Чебышева нижних частот представляет собой оптимальный полиномиальный фильтр. Он обладает амплитудно-частотной характеристикой, которая определяется так:
. (6)
Параметры иK– постоянные числа;Сn – является полиномом Чебышева первого рода степениnи имеет вид
.
Амплитудно-частотная характеристика достигает своего наибольшего значения Kв тех точках, гдеСn равно нулю. Поскольку эти точки распределены по полосе пропускания, то характеристика фильтра Чебышева содержит пульсации в полосе пропускания и является монотонной в других областях.
Размах этих пульсаций определяет параметр , а их число – степеньп. Коэффициент усиления фильтра определяется значениемK.
На
рис. 6 изображена АЧХ фильтра Чебышева
при K= 1 и= 1 рад/с.
Рис. 6. Амплитудно-частотные характеристики фильтра Чебышева нижних частот
Минимально допустимое затухание в полосе пропускания – постоянный размах пульсации, часто выражается в децибелах как
.
(7)
Наибольшим допустимым размахом пульсаций обладает фильтр Чебышева с неравномерностью передачи 3 дБ, для которого в (7) = 1.
Передаточные функции фильтров Чебышева нижних частот по форме идентичны функциям фильтра Баттерворта, определенным ранее.
Амплитудно-частотная характеристика фильтра Чебышева данного порядка лучше амплитудно-частотной характеристики Баттерворта, так как у фильтров Чебышева ширина переходной области меньше. Однако фазочастотная характеристика фильтра Чебышева хуже (более нелинейная) по сравнению с фазочастотной характеристикой фильтра Баттерворта. Можно также отметить, что фазочастотные характеристики фильтров Чебышева высокого порядка хуже фазочастотных характеристик фильтров более низкого порядка. Это высказывание согласуется с тем фактом, что амплитудно-частотная характеристика фильтра Чебышева высокого порядка лучше амплитудно-частотной характеристики фильтра более низкого порядка.
Фильтры нижних частот с многопетлевой обратной связью и бесконечным коэффициентом усиления (инвертирующее включение оу)
Для фильтра нижних частот второго порядка с частотой среза с типовая полиномиальная передаточная функция имеет следующий вид:
. (8)
Постоянные ВиСпредставляют собой нормированные коэффициенты, поскольку дляс= 1 эта передаточная функция приводится к виду (2) приn= 2. Для фильтров Баттерворта и Чебышева эти коэффициенты приведены в прил. 1. ПостояннаяKопределяет коэффициент усиления, который, конечно, также необходимо точно задать.
Для фильтров более высокого порядка уравнение (8) описывает передаточную функцию типового звена второго порядка, где K– коэффициент его усиления;ВиС– коэффициенты звена, приведенные в прил. 1.
Одна из наиболее простых схем активных фильтров, реализующих передаточную функцию нижних частот согласно (8), приведена на рис. 1.10. Она иногда называется схемной с многопетлевой обратной связью (МОС) и бесконечным коэффициентом усиления из-за наличия двух путей прохождения сигнала обратной связи через элементы С1иR2, а также вследствие того, что ОУ в этом случае работает как прибор с бесконечным коэффициентом усиления. Эта схема реализует уравнение (8) с инвертирующим коэффициентом усиления –K(K> 0) и
(9)
Сопротивления, удовлетворяющие уравнению (9):
(10)
Сопротивления задаются в омах, а емкости – в фарадах.
Следовательно, по заданным K, В, Сисможно выбрать значениеС1иС2и вычислить требуемые значения сопротивлений. Емкости должны иметь номинальные значения, которые в результате расчета дают реальное значение сопротивленияR2. Это условие выполняется, если
. (11)
Рис. 7. Схема фильтра нижних частот с МОС второго порядка
Целесообразный подход состоит в том, чтобы задать номинальное значение емкости С2, близкое к значению 10/fcмкФ и выбрать наибольшее имеющееся номинальное значение емкостиС1, удовлетворяющее уравнению (11). Сопротивления должны быть близки к значениям, вычисленным по (10). Чем выше порядок фильтра, тем более критичными являются эти требования.
Пример.Предположим, что необходимо разработать
фильтр Чебышева с МОС второго порядка
с неравномерностью передачи в полосе
пропускания= 0,5 дБ, полосой пропускания 1000 Гц и
коэффициентом усиления, равным 2. В этом
случаеK= 2,с= 2· 1000, а из прил. 1
находим, чтоВ= 1,425625 и
С=
1,516203. Выбирая номинальное значениеС2= 10/fc= =10/1000 = 0,01 мкФ, из (11) получаем
мкФ.
Выберем
номинальное значение емкости С1= 0,001 мкФ = 1 нФ и вычислим по (10) значения
сопротивлений. В результатеи
.
Пример.Предположим, что необходимо разработать
фильтр Баттерворта шестого порядка
с МОС, частотой среза fc
= 1000 Гц и коэффициентом усиления
K
= 8. Он будет состоять из трех звеньев
второго порядка, каждое с передаточной
функцией, определяемой уравнением (1).
Выберем коэффициент усиления каждого
звена K
= 2, что обеспечивает требуемый коэффициент
усиления самого фильтра
.
Из прил. 1 для первого звена находимВ
= 0,517638 и С
= 1. Снова выберем номинальное значение
емкости С2
= 0,01 мкФ и в этом случае
из (11) найдем
С1
<
0,00022 мкФ. Зададим номинальное значение
емкости
С1
= 200 пФ и из (10) найдем значение сопротивлений
R2
= 139,4 кОм;
R1
= 69,7 кОм; R3
= 90,9 кОм.
Два других звена рассчитываются аналогичным способом, а затем звенья соединяются каскадно для реализации фильтра Баттерворта шестого порядка. Результирующая схема имеет амплитудно-частотную характеристику, показанную ранее на рис. 5.
Из-за своей относительной простоты фильтр с МОС является одним из наиболее популярных типов фильтров с инвертирующим коэффициентом усиления. Он обладает также определенными преимуществами, а именно хорошей стабильностью характеристик и низким выходным полным сопротивлением; таким образом, его можно сразу соединять каскадно с другими звеньями для реализации фильтра более высокого порядка. Недостаток схемы состоит в том, что невозможно достичь высокого значения добротности Qбез значительного разброса значений элементов и высокой чувствительности к их изменению. Для достижения хороших результатов коэффициент усиленияKи добротностьQдолжны быть ограничены значением, приблизительно равным 10. Коэффициент усиления может быть больше, если значение добротности выбрано меньшим и выполняется ограничение, например:KQ= 100 приQ<10.