
- •654100 – Электроника и микроэлектроника
- •Оглавление
- •Часть первая. Микроэлектроника Глава 1. Общая характеристика микроэлектроники. Принципы функционирования элементов
- •1.1. Основные определения
- •1.2. Классификация изделий микроэлектроники
- •1.3. Физические явления, используемые в интегральной микроэлектронике
- •1.4. Процессы и явления, определяющие функционирование интегральных схем (ис)
- •1.5. Контактные явления в микроэлектронных структурах
- •1.6. Поверхностные явления в полупроводниках
- •1.7. Механизмы переноса носителей заряда
- •Глава 2. Базовые физико-химические методы создания микроэлектронных структур
- •2.1. Очистка поверхности пластин для ис
- •2.2. Получение полупроводниковых монокристаллов методом вытягивания из расплава
- •2.3. Термическое окисление
- •2.4. Эпитаксия
- •2.5. Фотолитография
- •2.6. Диффузия
- •2.7. Ионная имплантация (ионное легирование)
- •2.8. Металлизация
- •Глава 3.Типы подложек интегральных схем, их основные характеристики и процессы изготовления подложек
- •3.1. Изготовление подложек ис
- •3.3. Оптический метод ориентации полупроводниковых пластин
- •3.4. Шлифовка и полировка пластин
- •3.5. Строение нарушенного слоя после механической обработки пластины
- •Глава 4. Технология химической обработки подложек для интегральных микросхем
- •4.1. Механизм химической обработки кремниевых пластин
- •4.2. Термохимическое (газовое) травление
- •4.3. Ионно-плазменное травление
- •Глава 5. Диэлектрические пленки в ис. Методы их получения. Технологии изготовления гибридных ис
- •5.1. Конструктивно-технологические функции диэлектрических плёнок
- •5.2. Формирование плёнок SiO2термическим окислением кремния
- •5.3. Методы получения диэлектрических пленок в технологии гибридных ис
- •5.3.1. Термовакуумное реактивное испарение
- •5.3.2. Анодное окисление
- •5.3.3. Ионно-плазменное окисление
- •Глава 6. Ионное легирование полупроводников
- •6. 1. Общие принципы процесса ионного легирования
- •Для количественной оценки ф согласно (6.1) необходимо знать потенциал φ(u) взаимодействия частиц. В простейшем случае он равен кулоновскому потенциалу. Однако в реальном случае
- •6.2. Отжиг дефектов и электрические свойства слоёв
- •6.3. Импульсный лазерный отжиг
- •6.4. Маскирование в процессах ионного легирования
- •6.5. Маскирование фоторезистами
- •6.6. Маскирование пленками металлов
- •Глава 7. Элионные методы литографических процессов
- •7.1. Электронно-лучевая литография
- •7.2. Рентгенолучевая литография (рлл)
- •7.2.1. Особенности экспонирования в рлл
- •7.2.2. Технология рентгенолитографических процессов
- •7.2.3. Выбор резистов для рлл
- •Глава 8.Пленки в технологии ис, микросборок и коммутационных элементов
- •8.1. Металлические пленки для ис
- •8.2. Технология коммутационных элементов ис
- •8.3. Технология пленочных резисторов
- •8.4. Чистый металл и сплавы
- •8.5. Керметы (микрокомпозиционные пленки)
- •8.6. Изготовление тонкопленочных конденсаторов
- •8.7. Монооксид кремнияSiO
- •8.8. Пятиокись тантала Та2о5
- •8.9. Оксид алюминия Al2o3 и диоксид кремнияSiО2
- •8.10. Диоксид титана ТiО2
- •Глава 9.Монтаж кристаллов ис на носителях. Типы носителей. Особенности сборки ис в корпуса
- •9.1. Конструктивно-технологические варианты монтажа
- •9.2. Изготовление ленточных носителей
- •9.3. Получение внутренних выводов на кристаллах ис
- •9.4. Монтаж кристалла ис на гибкую ленту
- •9.5. Монтаж гибридных ис и микросборок
- •9.6. Особенности сборки сверхбыстродействующих ис и процессоров
- •Глава 10. Технология герметизации ис и мп
- •10.1. Пассивирующие и защитные покрытия ис
- •10.2. Принципы герметизации ис в корпусах
- •10.3. Герметизация ис в металлических корпусах
- •Часть вторая наноэлектроника
- •Глава 11. Теоретические основы наноэлектроники. Одноэлектронные приборы
- •11.1. Проблемы наноэлектроники (одноэлектроники)
- •11.2. Базовая теория кулоновской блокады
- •11.3. "Кулоновская лестница"
- •11.5. Квантовые размерные эффекты
- •11.6. Классификация одноэлектронных приборов
- •11.7. Одноэлектронный прибор на основе сканирующего туннельного микроскопа
- •11.8. Субмикронный вертикальный одноэлектронный транзистор (транзистор Остина)
- •11.9. Применение одноэлектронных приборов
- •Глава 12. Наночастицы и нанокластеры
- •12.1. Свойства наночастиц и их характеристики
- •12.2. Теоретическое моделирование наночастиц (модель ″желе″)
- •12.3. Геометрическая и электронная структуры нанокластеров
- •12.4. Реакционная способность наночастиц
- •12.5. Флуктуационные наноструктуры
- •12.6. Магнитные кластеры
- •12.7. Переход от макро- к нано-
- •12.8. Полупроводниковые наночастицы
- •12.9. Кулоновский взрыв
- •12.10. Молекулярные кластеры
- •12.11. Методы синтеза наночастиц
- •12.12. Химические методы синтеза наночастиц
- •12.13. Термолиз
- •12.14. Импульсные лазерные методы
- •Глава 13.Углеродные наноструктуры
- •13. 1. Природа углеродной связи
- •13.2. Малые углеродные кластеры – с60.
- •13.3. Неуглеродная шарообразная молекула
- •13.4. Углеродные нанотрубки
- •13.4.1. Методы получения нанотрубок
- •13.4.2. Электрические свойства нанотрубок
- •13.4.3. Колебательные свойства нанотрубок
- •13.4.4. Механические свойства нанотрубок
- •13.5. Применение углеродных нанотрубок
- •13.5.1. Полевая эмиссия и экранирование
- •13.5.2. Информационные технологии, электроника
- •13.5.3. Топливные элементы
- •13.5.4. Химические сенсоры
- •13.5.5. Катализ
- •13.5.6. Механическое упрочнение материалов
- •Глава 14.Объемные наноструктурированные материалы: разупорядоченные и кристаллизованные
- •14.1. Методы синтеза разупорядоченных структур
- •14.2. Механизмы разрушения традиционных материалов
- •14.3. Механические свойства наноструктурированных материалов
- •14.4. Многослойные наноструктурированные материалы
- •14.5. Электрические свойства наноструктурированных материалов
- •14.6. Нанокластеры в оптическом материаловедении
- •14.7. Пористый кремний
- •14.8. Упорядоченные наноструктуры
- •14.8.1. Упорядоченные структуры в цеолитах
- •14.8.2. Кристаллы из металлических наночастиц
- •14.8.3. Нанокристаллы для фотоники
- •Глава 15.Наноприборы и наномашины
- •15.1. Микроэлектромеханические устройства (mems)
- •15.2. Наноэлектромеханические системы (nems)
- •15.3. Наноактуаторы
- •15.4. Молекулярные и супрамолекулярные переключатели
- •Библиографический список Основной
- •Физические основы технологии микро- и наноэлектроники
- •620002, Екатеринбург, Мира, 19
- •620002, Екатеринбург, Мира, 19
13.5. Применение углеродных нанотрубок
Необычные свойства углеродных нанотрубок допускают множество возможных применений: от электродов батареек до электронных устройств и армирующих волокон для получения более прочных и легких композитов. Однако для реализации данного потенциала прочности необходимо разработать технологию крупномасштабного производства однослойных нанотрубок. Существующие методы синтеза обеспечивают лишь небольшой выход конечного продукта, стоимость которого в настоящий момент составляет 1500 долларов за 1 грамм! Методы, используемые для увеличения масштабов производства многослойных нанотрубок, должны лечь в основу широкомасштабного производства и однослойных нанотрубок. Предполагается, что если темп развития и совершенствования технологий сохранится, то в ближайшие 4-5 лет стоимость получения одного килограмма углеродных нанотрубок составит 10 долларов за килограмм.
13.5.1. Полевая эмиссия и экранирование
При приложении небольшого по величине электрического поля вдоль оси нанотрубки, с ее концов происходит очень интенсивная эмиссия электронов. Такое явление называют полевой эмиссией. Данный эффект легко наблюдать, прикладывая небольшое напряжение между двумя параллельными металлическими электродами, на один из которых нанесена композитная паста из нанотрубок. Если достаточное количество трубок окажется перпендикулярными электроду, то будет иметь место полевая эмиссия. Одним из применений эффекта полевой эмиссии является усовершенствование плоских дисплеев современных компьютеров. В частности, фирма Samsung разрабатывает плоский дисплей, использующий электронную эмиссию углеродных нанотрубок, т.е. тонкая пленка из нанотрубок помещается в слой с управляющей электроникой и покрывается сверху стеклянной пластиной, покрытой слоем люминофора.
Другие производители электроники применяют эффект электронной эмиссии в осветительных вакуумных лампах, которые не уступают обычным лампам накаливания по яркости, но более долговечны и имеют значительно меньшее энергопотребление.
Высокая электрическая проводимость углеродных нанотрубок означает, что они будут плохо пропускать электромагнитные волны. Композитный пластик с нанотрубками может служить материалом, экранирующим электромагнитное излучение. Это очень важный момент для военных, развивающих методы управления, контроля и связи, принципиально по-новому защищенных от помех, в том числе и от электромагнитного импульса – основного поражающего фактора при ядерном взрыве.
13.5.2. Информационные технологии, электроника
Совсем недавно была показана возможность конструирования полевых транзисторов на основе полупроводниковых углеродных нанотрубок, соединяющих два золотых электрода. Схематически такое устройство изображено на рис. 13.11. При приложении небольшого напряжения к затвору по нанотрубке между истоком и стоком течет ток. При протекании тока элемент находится в состоянии ″включено″, а при отсутствии тока – в состоянии ″выключено″. Обнаружено, что небольшое напряжение на затворе может изменить проводимость нанотрубки более чем в 106 раз, что сравнимо со значением проводимости для кремниевых полевых транзисторов. Время переключения таких устройств будет очень маленьким, а тактовая частота переключения может составить 1-2 ТГц, что в 1000 раз быстрее современных процессоров. Сток и исток в таких устройствах формируются методами нанолитографии, диаметр соединяющей их нанотрубки составляет ~1 нм. Подобные малые размеры позволяют поместить на электронный чип большое количество переключателей. Пока полевые транзисторы на основе углеродных нанотрубок создаются в лабораторных условиях поштучно и для их использования в компьютерных чипах еще предстоит разработать недорогие способы массового производства.
Рис. 13.11. Устройство полевого транзистора на основе углеродной нанотрубки
Другой активно развиваемой идеей является создание элементов компьютера из нанотрубок. Такой элемент представлял бы собой массив из параллельных нанотрубок на подложке (рис. 13.12). Над ними располагается другой массив нанотрубок, перпендикулярный первому массиву, причем точки переключения являлись бы переключателями – логическими элементами процессора.
Рис. 13.12. Схема логического элемента процессора на основе нанотрубок
Когда трубки не касаются друг друга, то переключатель разомкнут (логический сигнал 0), наоборот – замкнут (логический сигнал 1). Управление режимами переключения осуществляется токами, протекающими по нанотрубкам. По оценкам исследователей, на квадратном сантиметре подобной ИС можно расположить примерно 108 таких логических элементов.