
- •Lecture 1-4. Imitating modelling
- •Introduction
- •1 Prior to the next nearest event (synchronous-event-method):
- •Verification and validation of the model
- •Verification
- •Lecture 5-9. Econometric modelingОбобщенная The linear model of multiple regressionОсновные Modeling stage:
- •In each cluster, find the sample variance:,
- •It may be, for example, errors associated autoregression model of the 1st order (ar (1)):
- •If you test the hypothesis
- •In both cases, the estimates of the coefficients can be obtained by ols with covariates:
In both cases, the estimates of the coefficients can be obtained by ols with covariates:
,,
.
The design
matrix contains adjacent columns revenues lagging in one time unit,
therefore, adjacent columns are almost identical, and this leads to
multicollinearity and poor reversibility of the matrix ,
.
Therefore,
starting from the substantive nature of the simulated dependence
(),postulate
with a small number of parameters:
;
problem reduces to the evaluation of their:
.
For example, it is implemented in a polynomial lag structure Almon S.
(1965).
The lag polynomial structure Almon
Approximate dependence of β on lag l low degree polynomial M (M <= 3):
,
or
(17)
Substituting (17) into (15) and collecting similar, we obtain
Variables
not multicollinearity, and OLS is no problem. Selection of L is
carried out on the basis of the length of the available time series
empirically.
Example :using data
xt |
10 |
18 |
18 |
16 |
18 |
20 |
24 |
24 |
20 |
21 |
22 |
25 |
27 |
27 |
30 |
28 |
32 |
32 |
30 |
yt |
|
|
|
|
|
28 |
30 |
31 |
32 |
33 |
32 |
33 |
34 |
36 |
37 |
38 |
40 |
41 |
41 |
estimate
the model parameters (15) with L = 5 for structure Almon with M = 3.
Redenoting ,
have a multiple regression model
(18)
Matrix ,
.
OLS
coefficient vector :
.
Substituting
this in (17), we find that the desired estimates of the coefficients
of the model (15):и
.
The coefficient of determination:
.
R2= 0.9931.
Forecast by
the model. Suppose we know the new value of the independent variable
x20 = 24. Obviously, the prognosis of the corresponding value of the
dependent variable is given by.
.
The geometric structure of the lag cot
Example:
study the dependence of
– introduction of fixed assets in the t-th year of
- Capital investments in previous years. Built all long, so we assume the existence of arbitrarily large lags.
.
L. Koike (1954) suggested:
,
l = 0, 1, 2... ,
(0 < λ < 1) – denominator exponentially
, (19)
,
, (20)
.
(19) – (20):
,
. (21)
Definition:model like
,
(22)
including
explaining the endogenous variable lags ,
called the model of Koyk.
Note:
model often correlates with
and with
(autocorrelation), for example, see. (21):
.
This makes it impossible to use in the OLS estimation of 3
coefficients in (22), and methods of identifying the model cot depend
on the properties
.
Partial adjustment model
Example:
study the dependence of the release
some product on demand
it. Obviously demand determines
–
optimum production of goods;
; (23)
and the
actual output:
,
where
– the power of intuition and / or capabilities of the enterprise.
put in(23):
.
This is a special case of the model Koyk with an error at one time is not correlated with Yt-1. Estimates of OLS is asymptotically unbiased.
Example ([2], table. 6.9, с. 198):
The economic data from the United States ($ billion)
–housing costs;
–personal
income;
–house price
index as a percentage of 1972.
If you
build a regression
on
и
,
we get:
,
–autocorrelated
errors, estimates are inefficient.
If you
build a regression
on
,
and
,
we get:
errors are not autocorrelated.
Thus
,
the estimate of the correction factor
(ie, the population of the USA slowly adjusts investments in housing
when changing personal income and housing prices); estimation of
optimum investment in housing:
,
where
Note: partial adjustment model should be used when a clear connection with the idealized characteristic factors and the observed characteristics of the resulting partially corrected to idealized.
Model of adaptive expectations
Example:
Let study the dependence of investment bank-rate .
In fact, investors are based on the expected bank-rate
in the future year.
;
(24)
very magnitude they define as:
;
;
.Substituting this in (24):
–this
leads to a model Koyk with errors correlated with lagged
.
The model is nonlinear in the parameters, so instead of the usual OLS should use a nonlinear OLS:
(модели
);
;
,
(25)
.
Example: Cagan model of hyperinflation F. (1956 г.).
Investigated the 7 periods of hyperinflation in the United States (1921–1956 гг.),
time step
was 1 month.,
– the expected inflation rate for the next month. Kagan is
reasonably believed that the higher the level of inflation in the
next month, the lower the demand for money.
,
where
– index changes in the volume of money in circulation;
–price index.
unobserved,
then it used a model of adaptive expectations, then used the
nonlinear least squares. result:
,.
If
(10 %), the demand for money will be 37.4% less than with stable
prices (
):
.
Consumption pattern Friedman
M. Friedman conjectured that individual consumption in period t th
proportionally
feel it sustainable, permanent income
in this period:
.
(26)
If –
real income, then
,
–
parameter adjustment.
,
and substituting it in (26), we obtain a model of Koyk.
Using data
on real per capita consumption and real per capita income in the
United States in the 1905 - 1951 period. To estimate the coefficients
used nonlinear least squares preserving 17 terms in (24). It turned
.
Dynamic properties of the model to better analyze Friedman after conversion Koyk:
.
Short-term marginal propensity to consume:
,
.
In the long
term (equilibrium):
;
;
;
–long-term propensity to
consume. The difference between these two values was first
explained Friedman.
Main literature
Айвазян С.А. Прикладная статистика и основы эконометрики / С.А. Айвазян, В.С. Мхитарян. М.:ЮНИТИ, 2001.
Доугерти К. Введение в эконометрику / К. Доугерти. М. : Инфра – М, 2001. 402 с.
Тихомиров Н.П. Эконометрика / Н.П. Тихомиров, Е.Ю. Дорохина. М.: Экзамен, 2003. 512 с.
Магнус Я.Р. Эконометрика. Начальный курс / Я.Р. Магнус, П.К. Катышев, А.А. Пересецкий. М. : Дело, 2005.
Берндт Э.Р. Практика эконометрики / Э.Р. Берндт. М. : Юнити-Дана, 2005.
Additional literature:
Handbook of Econometrics. Volumes 1, 2 and 3 / preface by Z. Griliches and M.D. Intriligator. Режим доступа: http://www.elsevier.com/hes/books/02/preface/preface.htm.
Тюрин Ю.Н. Статистический анализ данных на компьютере /
Ю.Н. Тюрин, А.А. Макаров. М. : Инфра – М, 1998.
Campbell G. The Econometrics of Financial Markets / G. Campbell, R. Lo,
J. MacKinlay. N. Y., 1997.
Уотшем Т.Дж. Количественные методы в финансах / Т.Дж. Уотшем,
К.М. Паррамоу. М. : ЮНИТИ, 1999.
Пугачев В.С. Теория вероятностей и математическая статистика /
В.С. Пугачев. М. : ФИЗМАТЛИТ, 2002.
Пащенко Ф.Ф. Введение в состоятельные методы моделирования систем / Ф.Ф. Пащенко. М. : Финансы и статистика, 2006.
Секей Г. Парадоксы в теории вероятностей и математической статистике / Г. Секей. М. : Мир, 1990.
Руководство пользователя пакета программ SPSS v. 7.
Руководство пользователя пакета программ STATISTICA v. 6.
Справочник по прикладной статистике: в 2 т. / под ред. Э. Ллойда,
У. Ледермана. М. : Финансы и статистика, 1990.
Колемаев В.А. Теория вероятностей и математическая статистика / В.А. Колемаев, О.В. Староверов, В.Б. Турундаевский. М. : Высшая школа, 1991.
Кейн Э. Экономическая статистика и эконометрия. Вып.1, 2 / Э. Кейн. М. : Статистика, 1977.
Breiman L. Estimating Optimal Transformations for Multiple Regression and Correlation / L. Breiman, J.H. Friedman // Journal of the American Statistical Association. 1985. V. 80. N 391.
Ширяев А.Н. Основы стохастической финансовой математики: в 2 т. / А.Н. Ширяев. М. : ФАЗИС, 1998.
Tsay R.S. Analysis of financial time series / R.S. Tsay. John Wiley & Sons, 2002.