
- •Параметры состояния рабочего тела, способы и единицы их измерения.
- •Примерный состав продуктов сгорания и способы его измерения.
- •Способы измерения расходов теплоносителей и учета тепловой энергии в системах отопления и гвс.
- •Основные газовые законы. Уравнение состояния идеального газа.
- •Какой параметр остается неизменным в адиабатическом процессе и почему?
- •Что такое энтальпия? Как изменяется энтальпия в процессе дросселирования идеального газа?
- •Первый закон термодинамики и его записи через внутреннюю энергию и энтальпию.
- •Записать формулы для расчета количества тепла, необходимого для нагрева м кг газа на t°c при постоянном объеме и давлении.
- •Дайте одну из формулировок II закона термодинамики. Приведите его математическую запись.
- •Принцип работы вечных двигателей I-го II-го рода.
- •Что такое помпаж и как его избежать?
- •Как запускаются мощные центробежные и поршневые компрессоры?
- •Для чего служат промежуточные и концевые холодильники в компрессоре?
- •Цикл идеального теплового двигателя и его к.П.Д. (цикл Карно).
- •Цикл Ренкина и его к.П.Д.
- •Способы повышения эффективности использования топлива в цикле Ренкина
- •Влажный воздух и его характеристики.
- •Как рассчитать тепловую мощность, необходимую для получения м кг/с перегретого пара с параметрами р и т?
- •Основные способы распространения тепла.
- •Основной закон теплопроводности — закон Фурье.
- •Что такое коэффициент теплопроводности, его размерность, от чего зависит его величина, где его взять для выполнения расчетов?
- •Порядок величины коэффициента теплопроводности для различных веществ.
- •Виды конвекции, и чем они отличаются.
- •Основное уравнение конвективного теплопереноса — уравнение Ньютона.
- •Что такое коэффициент теплоотдачи, его размерность, как его определить для выполнения расчетов?
- •От чего зависит коэффициент теплоотдачи? Порядок его величины для различных случаев теплообмена.
- •Что такое коэффициент теплопередачи. И от чего он зависит?
- •Как рассчитать тепловой поток теплопроводностью через плоскую стенку?
- •Как рассчитать тепловой поток теплопроводностью через многослойную плоскую стенку.
- •Как рассчитать тепловой поток излучением между двумя бесконечными плоскими стенками? Между телами произвольной формы?
- •Как рассчитать средний температурный напор Δt в теплообменнике? При каких условиях среднелогарифмический напор можно заменить среднеарифметическим?
- •Виды теплообменников и области их преимущественного применения.
- •Основные этапы выполнения теплового и конструктивного расчета теплообменника.
- •Основные этапы выполнения поверочного расчета теплообменника.
- •Преимущества и недостатки мини – тэц и крупных тэц, расположенных за городом.
- •Какие единицы измерения концентрации растворов используются в водоподготовке (молярная, мольная) и почему?
- •Понятие щелочности воды. (Метод его определения).
- •Понятие жесткости воды. (Метод его определения).
- •Какие виды жесткости бывают, и какие из них наиболее опасны для паровых и водогрейных котлов?
- •Показатель концентрации ионов водорода в воде – рН.
- •Назначение Na – катионирования. Как меняются при этом свойства воды?
- •Понятие продувки котла. Зачем нужна, какая бывает и как осуществляется?
- •Каким образом используется тепло продувочной воды?
- •Тепловой баланс котла. Примерные величины основных потерь.
- •Теплота сгорания.(Как определяются?).
- •Низкотемпературная коррозия и меры борьбы с ней.
- •Способы регулирования температуры перегретого пара в паровых котлах.
- •Перечислите вредные выбросы из котла и укажите методы их снижения.
- •Зачем ставится экономайзер в котле, и почему его ставят в рассечку с воздухоподогревателем?
- •Как определяются гидравлические потери на местных сопротивлениях? От чего зависит величина коэффициента местного сопротивления ξм?
- •Что такое кавитация? Перечислите разрушительные факторы кавитации.
- •Причины возникновения и способы устранения кавитации в насосах.
- •Гидродинамический смысл числа Рейнолдса Re, его размерность и способ расчета.
- •Как рассчитать массовый расход рабочей среды при стационарном течении в трубопроводе диаметра d?
- •Как рассчитать объемный расход несжимаемой жидкости при стационарном течении в трубопроводе диаметра d?
- •Каковы причины использования многоступенчатых нагнетателей?
- •Причины возникновения и способы компенсации осевой силы в нагнетателях.
- •Основные типы энергетических насосов (по назначению).
- •Что такое «самотяга» дымовой трубы?
- •Способы регулирования производительности нагнетателей, их преимущества и недостатки.
- •Каков принцип действия направляющих аппаратов у нагнетателей?
Причины возникновения и способы устранения кавитации в насосах.
Особенностью эксплуатации насосов является возможность вскипания жидкости на входе в рабочие колеса с последующей кавитацией в проточной части (подробности в предыдущем вопросе). За входными кромками лопаток давление насыщение начинает расти и превышает давление насыщения, при этом паровые пузыри конденсируются, конденсация приводит к гидроудару в микрообъеме. Амплитуда гидроудара до 2000 атм., а температура порядка 500÷800°С. В насосах кавитация происходит, в том числе и на стенках рабочих каналов, вызывая разрушение металла – питтинг.
Кавитация имеет три стадии
начальная, при размере пузырей ~100 мкн.
развитую, когда пузыри сливаются в паровые полости – каверны.
суперкавитацию — каверна захватывает большую часть входного сечения рабочего канала.
Закон Бернулли. Согласно закону Бернулли, в жидкости без трения энергия постоянна вдоль линии тока. Это можно выразить равенством
где p– давление, – плотность, а v–скорость. Индексы 0, 1 и 2 относятся к любым трем точкам на данной линии тока.
Из указанного равенства следует, что при увеличении скорости понижается местное давление (пропорционально квадрату скорости). Всякая частица жидкости, движущаяся по искривленной линии тока, например, огибающей профиль (рис. 1), ускоряется и претерпевает понижение местного давления. Если давление снижается до давления насыщенного пара, то возникает кавитация. Таков механизм явления кавитации на подводных крыльях, гребных винтах, лопатках турбин и лопастях насосов.
В случае жидкости, текущей по трубе, согласно закону сохранения массы (уравнению неразрывности), скорость жидкости увеличивается в местах сужения трубы, где также возможна кавитация.
–формула Руднева.
Эта формула является полуэмпирической и содержит только один выбираемый параметр С=900÷1500 – кавитационный коэффициент быстроходности.
Из формулы видно что:
С ростом температуры жидкости критическая высота всасывания уменьшается и может стать отрицательной. Поэтому на горячих жидкостях насосы работают с гидростатическим подпором.
С увеличением быстроходности насоса критическая высота всасывания снижается.
Способы устранение кавитации:
Создание гидростатического подпора на всасе, т.е. всасывающий патрубок насоса находится на уровне жидкости в питающем резервуаре (деаэратор выше питательного насоса);
Применение предвключенных (бустерных) насосов. Защита от кавитации бустером достигается пониженным числом оборотов по отношению к основному насосу.
Использование предвключенных ступеней. Первую ступень многоступенчатого насоса делают с малым гидравлическим сопротивлением за счет больших проходных сечений, часто она выполняется другого конструктивного типа.
Причиной кавитации является падение давления на входе в насос ниже давления насыщения при данной температуре жидкости. Способом борьбы является поддержание давления на входе выше давления насыщения за счет создания гидростатического подпора (деаэратор выше питательного насоса) либо применение предвключенных – бустерных – насосов, повышающих давление на входе в основной насос. А также использование специальных предвключенных ступеней, с увеличенным проходным сечением.