Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

В.Н.Горбунова_Медицинская-генетика

.pdf
Скачиваний:
180
Добавлен:
22.02.2015
Размер:
1.89 Mб
Скачать

болезней распознаются в перинатальном или раннем детском возрасте.

Около 25% этих болезней развиваются в эмбриональном периоде, и еще около 50% проявляются к 3 годам. К концу пубертантного периода диагностируются примерно 90% всех моногенных болезней. Наряду с этим известны наследственные болезни с поздними сроками проявления, такие как спинно-мозжечковые атаксии, хорея Гентингтона, моногенные формы болезней Паркинсона и Альцгеймера и другие. Типичными чертами многих наследственных заболеваний являются хронический характер и прогредиентность течения, то есть постепенное ухудшение общего состояния с нарастанием негативных симптомов. Множественность поражения, обусловленная плейотропным действием гена, типична для большинства наследственных заболеваний. В некоторых случаях удается проследить семейный характер заболевания. Однако отсутствие повторных случаев болезни у членов одной и той же семьи не исключает того, что заболевание является наследственным. Необходимо помнить, что наследуются не заболевания, а гены, точнее их аллельные состояния.

Поэтому очень часто в семье может быть только один больной с наследственным заболеванием.

При некоторых моногенных заболеваниях выявляются редкие специфические симптомы или даже сочетания этих симптомов. Иногда их проявления не имеют клинического значения, но являются ключевыми при постановке диагноза. Например, наличие симметричных ямок или фистул на слизистой нижней губы в сочетании с расщелиной неба при синдроме Ван дер Вуда, присутствие насечек на мочке уха у ребенка с макроглоссией и расхождением прямых мышц живота при синдроме Беквита-Видемана,

широкий первый палец на кистях и стопах в сочетании с прогрессирующей умственной отсталостью при синдроме Рубинштейна-Тейби и т. д. Многие моногенные заболевания относятся к классу неизлечимых или трудно поддающихся лечению заболеваний. Для них характерна «резистентность» специфических клинических проявлений к наиболее распространенным

методам терапии. Это объясняется тем, что в основе своей лечение направлено на устранение какого-то определенного симптома, но не причины заболевания. Каждая из перечисленных выше черт в отдельности может быть недостаточна для предположения о наследственном характере заболевания, но различные их сочетания часто позволяют заподозрить подобную патологию у обследуемого пациента.

Моногенные болезни можно разделить на две группы. Первая группа – менделирующие заболевания. Их наследование соответствует законам Менделя о рецессивности и доминантности гена и пребывании его в гомо-

или гетерозиготном состоянии. В зависимости от локализации мутантного гена и характера доминирования выделяют аутосомно-доминантные,

аутосомно-рецессивные и сцепленные с полом заболевания, которые также могут быть доминантными или рецессивными. Наследование некоторых моногенных заболеваний не подчиняется законам Менделя. Они составляют группу болезней с нетрадиционными типами наследования. Это митохондриальные заболевания, болезни экспансии, обусловленные динамическими мутациями, болезни геномного импринтинга и болезни,

обусловленные другими нарушениями эпигенетической регуляции работы генов.

Большое разнообразие и редкость моногенных болезней делают дорогостоящей разработку специфических методов их диагностики и терапии. В разных странах эта проблема решается по-разному. Но наиболее эффективная помощь пациентам с моногенными заболеваниями оказывается там, где развиты родительские общества, привлекающие внимание общественности к таким больным и добивающиеся спонсорской и государственной поддержки соответствующих программ. Профилактика моногенных заболеваний проводится на базе пренатальной диагностики.

Заметим сразу, такой подход применим только в случае тяжелых неизлечимых болезней. К сожалению, пренатальная диагностика практически проводится только в тех семьях, где уже имеется больной

ребенок. Целью ее является предотвращение повторного рождения в семье больного. Напомним, что у гетерозиготных родителей при каждой беременности сохраняется высокий риск рождения больного ребенка,

независимо от того, кто родился перед этим - больной или здоровый. Кроме того, этот риск может быть повышен и у других родственников больного.

Поэтому так важно проводить молекулярную диагностику не только самому больному, но и его родственникам, особенно тем, которые хотят иметь детей.

2.1.3. Мльтифакториальные болезни

Мультифакториальные заболевания обусловлены комбинированным действием неблагоприятных внешних и генетических факторов риска,

формирующих наследственную предрасположенность к заболеванию. К

мультифакториальным заболеваниям относятся подавляющее большинство хронических болезней человека, включая сердечно-сосудистые,

эндокринные, иммунные, нервно-психические, онкологические и др.

Генетические составляющие могут присутствовать в этиологии даже тех заболеваний, развитие которых целиком индуцируется внешними воздействиями и невозможно без их присутствия, таких, например, как инфекционные болезни. Однако и в этих случаях индивидуальная чувствительность к подобным внешним неблагоприятным воздействиям может быть генетически детерминирована.

В настоящее время в качестве генетических факторов риска рассматривают широко распространенные среди населения полиморфные аллели, обладающие относительно небольшим повреждающим эффектом на функцию гена. Те гены, полиморфные аллели которых участвуют в формировании наследственной предрасположенности к определенной патологии, иногда называют генами предрасположенности или генами-

кандидатами. Для разных мультифакториальных заболеваний число генов-

кандидатов может достигать десятков или даже сотен. Поиск таких генов осуществляется с учетом знаний об основах этиологии и патогенеза заболевания. Какие метаболические циклы дефектны при тех или иных

заболеваниях? Какие белки оперируют в этих патологических метаболических циклах и как устроены гены, кодирующие эти белки?

Имеются ли там полиморфные аллели, ухудшающие работу всей метаболической системы в целом, и не являются ли они генетическими факторами риска развития определенной патологии? Для ответа на этот последний вопрос проводят сравнение частот полиморфных аллелей в выборках больных и здоровых людей. Считается, что полиморфный аллель участвует в формировании наследственной предрасположенности к заболеванию в том случае, если его частота у больных достоверно превышает контрольный уровень. Например: существует повышенная вероятность возникновения у пациента инфаркта миокарда или развития атеросклероза при наличии полиморфных аллелей в генах, ответственных за оптимальную работу сердечно-сосудистой системы. Это могут быть гены, участвующие в контроле липидного метаболизма, ренин-ангиотензин-альдестероновой системы или системы свертывания крови и фибринолиза. С развитием медицинской генетики ученые открывают все большее число генов-

кандидатов, от состояния которых зависит происхождение и тяжесть течения заболевания у конкретного пациента.

В последнее время в отдельную группу выделяют заболевания,

обусловленные мутациями, возникающими в соматических клетках пациента. Иногда их называют болезнями нуклеиновых кислот. Прежде всего, это онкологические и, возможно, некоторые аутоиммунные заболевания.

Глава 2.2. Методы медицинской генетики

Существуют различные методы изучения наследственных болезней,

главными из них являются клинико-генеалогический, близнецовый,

популяционный, цитогенетический, биохимический и молекулярно-

генетический.

2.2.1. Клинико-генеалогический метод

Клинико-генеалогический метод включает клиническое обследование членов семьи пациента, обратившегося за консультацией, составление ее родословной и проведение генеалогического анализа. Генеалогический анализ является самым распространенным, наиболее простым и одновременно высоко информативным методом, доступным каждому, кто интересуется своей родословной и историей своей семьи. Он не требует никаких материальных затрат и аппаратуры. Убеждены, что со временем в каждой истории болезни будет представлена родословная пациента, как обязательная часть анамнеза жизни.

Один из основателей клинической генетики и медико-генетического консультирования в России С.Н. Давиденков (1960) писал: «В постановке клинического диагноза, то есть в непосредственной практической работе врача генеалогическое исследование относится к чрезвычайно важным, а

нередко и к решающим моментам распознавания; привычка пользоваться для диагностики методом генеалогии и личного обследования родственников оказывается настолько сильным подспорьем в ежедневной работе, что всякому имеющему в этом хотя бы небольшой опыт, кажется странным, как можно было довольствоваться рассмотрением одних голых фенотипов,

совершенно игнорируя наследственные особенности, которые были свойственны этим людям (семье) еще задолго до заболевания».

Родословная раскрывает медико-патологический фон семьи, по ней можно с определенной точностью судить о типе наследования патологии, о

членах семьи, нуждающихся в обследовании и наблюдении врача. Во время составления родословной возникает значительно более теплый и доверительный контакт с больным и его родными, чем просто разговор о болезнях близких. Хорошо составленная родословная помогает прогнозировать состояние здоровья родственников больного, их детей и будущего потомства.

Основателем генеалогического метода изучения наследственности считается немецкий историк О. Лоренц, опубликовавший в 1898 году

учебник генеалогии, в котором рассматриваются закономерности происхождения различных семейных заболеваний. В этом учебнике генеалогия рассматривается не как отрасль исторических знаний, а как самостоятельная наука, доставляющая обильный материал для биологии,

психологии, психиатрии и др., и имеющая свои задачи по установлению

закономерностей

в смене поколений. В

1912 году американский

евгенический

институт выпустил образцы прямолинейных родословных

таблиц, которые применяются до настоящего времени, не претерпев практически никаких изменений. Символы, применяемые при составлении родословной, отражены на рис.1, принцип составления родословной представлен на рис. 2. Лицо, с которого начинается исследование родословной называется пробанд, и далеко не во всех случаях это бывает больной, особенно в детской практике. Родословную лучше всего рисовать на большом листе бумаги, разлинованным по горизонтали. На одной линии должны быть размещены все родственники, относящиеся к одному поколению. Поколения обозначают римскими цифрами, а отдельных членов каждого поколения – арабскими. В этом случае каждый член семьи будет иметь свой индивидуальный номер из одной римской и одной арабской цифры. Необходимо указывать возраст всех членов родословной, так как разные заболевания проявляются в разные возрастные периоды жизни, и

отмечать лично обследованных знаком «!». Более подробные объяснения к родословной называют легендой, их обычно записывают на отдельных карточках.

По хорошо составленной родословной можно получить ответы на многие вопросы. В частности, по ней можно увидеть, какие заболевания наиболее распространены в семье, и кого из ее членов нужно обследовать на генетическую предрасположенность к определенной патологии. По родословной можно определить тип наследования заболевания и выяснить,

кто из членов семьи имеет высокий риск заболеть или родить подобного больного. Из этих данных вытекает выбор метода диагностики и проведения

профилактических мероприятий, оказание своевременной медицинской помощи.

Использование клинико-генеалогического метода предполагает тщательное клиническое обследование максимального количества членов родословной с целью выявления стертых и атипичных признаков заболевания. Сбор анамнестических данных проводят по определенной схеме. Сведения о пробанде, данные о сибсах и родителях пробанда,

сведенья о родственниках со стороны матери и со стороны отца записываются в медико-генетическую карту. Очень важен при этом акушерский анамнез женщин – как протекала и на каком фоне наступила беременность, подробности о спонтанных абортах, мертворождениях,

наличии бесплодных браков и ранней детской смертности. Необходимо учитывать также наличие и характер профессиональных вредностей,

факторов, влияющих на патологию плода (прием лекарственных препаратов,

заболевания матери и т.д.).

Родословная семьи может быть хорошим подспорьем для молодых ее членов в решении социально-профессиональных вопросов. «Создание и накопление «историй жизни» и «семейных хроник» есть задача не только гуманитарно-научная, но и общекультурная», - считает петербургский социолог А.Н.Алексеев. Причем, добавляет ученый: «Всякая «история жизни», для какой бы цели она ни создавалась, должна включать генеалогическую информацию – столь подробную, насколько это под силу автору данной истории. Семейные хроники строятся на четком определении степеней родства, желательно построение генеалогического древа, что требует минимального обучения».

Владимир Набоков в автобиографическом романе «Другие берега» пишет: «Восемнадцати лет покинув Петербург, был слишком молод в России, чтобы проявить какое-либо любопытство к моей родословной;

теперь я жалею об этом – из соображений технических: при отчетливой личной памяти неотчетливость семейной отражается на равновесии слов».

2.2.2. Близнецовый метод

Близнецовый метод основан на клиническом обследовании и сравнении моно- и дизиготных близнецов, воспитывающихся в одинаковых или различных условиях окружающей среды. Монозиготные близнецы развиваются из одной оплодотворенной яйцеклетки и имеют одинаковую наследственную конституцию. Таким образом, выявляемые между ними различия не связаны с наследственными факторами. Дизиготные близнецы развиваются из разных яйцеклеток, оплодотворенных различными сперматозоидами. Степень их генетического сходства такая же, как у обычных сибсов, но благодаря одновременному рождению и совместному воспитанию они имеют больше общих средовых факторов. Особую ценность при изучении наследственных факторов, влияющих на тип поведения,

психологические или интеллектуальные особенности, представляют

монозиготные близнецы, разделенные в младенческом или раннем детском возрасте и воспитывающиеся в разных условиях. С помощью близнецового метода удалось доказывать значение генетической предрасположенности ко многим широко распространенным заболеваниям.

Результатом сравнения двух групп близнецов является расчет процента

идентичности или конкордантности различных признаков или болезней,

проявляющихся у каждого из пары близнецов. Чем больше наследственная составляющая признака или заболевания, тем выше значения конкордантности, но самое главное – больше уровень расхождения между моно- и дизиготными близнецами. Количественной оценкой доли наследственной обусловленности признака является коэффициент наследуемости (H), рассчитываемый по следующей формуле, предложенной Хольцингером:

Н = (КМБ – КДБ)/(100КДБ),

где КМБ и КДБ – выраженная в процентах конкордантность признака для моно- и дизиготных близнецов соответственно. Если Н>70%, решающая роль в проявлении признака принадлежит наследственным факторам. При H<30%

– средовые факторы являются основными в формировании признака. При промежуточных значениях Н предполагается примерно равное участие в контроле признака как генетических, так и средовых факторов.

Например, при заболевании корью или коклюшем одного из партнеров близнецовой пары вероятность заболевания второго (конкордантность пары)

в группах моно и дизиготных близнецов практически одинаковая: 98% и 94%

и 97% и 93%, соответственно. Преобладающая роль инфекционного фактора в данном случае очевидна. При туберкулезе вероятность заболевания второго близнеца в монозиготной паре почти в 3 раза больше, чем в дизиготной –

67% и 23 %. То есть при идентичном генотипе сходная реакция на туберкулезную инфекцию наступает чаще, чем при разных генотипх. Этот

факт показывает значительную роль наследственной предрасположенности

ребенка к туберкулезу, что в настоящее время очень важно иметь в виду в связи с данными об увеличении распространенности туберкулеза.

2.2.3. Популяционный метод

Популяционный метод направлен на изучение частот аллелей и генотипов в различных популяциях, а также факторов, влияющих на их динамику. Этот метод особенно важен при проведении эпидемиологических исследований. Генетическое изучение популяций человека невозможно без

учета географических и климатических условий.

Но особенно важны

демографмческие характеристики популяции, такие

как

численность,

рождаемость, смертность, возрастная и социальная структура, национальный состав, религиозная принадлежность, образ жизни, особенности питания,

наличие вредных привычек и др. Наследственные заболевания в разных популяциях, этнических группах и расах встречаются с разными частотами, и

это обусловлено различиями в частотах и спектрах мутаций.

Анализ соответствия распределения частот аллелей и генотипов в различных популяциях закону Харди-Вайнберга позволяет судить о том,

является ли популяция панмиктической, то есть соблюдается ли в ней принцип случайности скрещивания вне зависимости от генотипов особей.

Важными практическими задачами являются анализ спектров и частот распределения в отдельных популяциях мутантных аллелей,

ассоциированных с определенными наследственными заболеваниями, и

выявление среди них мажорных мутаций.

2.2.4. Цитогенетический метод

Цитогенетический метод применяется для анализа кариотипа и его аномалий у отдельных индивидуумов. Для проведения исследования достаточно получить образец периферической крови пациента объемом 1-2

мл. Анализ кариотипа проводят в три этапа: культивирование лимфоцитов крови, окраска препарата и его микроскопический анализ. Культивирование проводят для того, чтобы стимулировать деление лимфоцитов, так как успех цитогенетического исследования зависит от количества клеток, находящихся на стадии метафазы, когда хромосомы находятся в наиболее компактной форме. Продолжительность культивирования обычно составляет 72 часа. Для увеличения количества метафазных клеток в конце культивирования в среду вводят колхицин, который приостанавливает деление на стадии метафазы,

разрушает веретено деления и увеличивает конденсацию хромосом. Далее клетки помещают в гипотонический раствор, который приводит к разрыву ядерной оболочки и свободному перемещению хромосом в цитоплазме. На следующем этапе клетки фиксируют смесью этанола и уксусной кислоты в соотношении 3:1, их суспензию раскапывают на предметные стекла и высушивают. В зависимости от целей кариотипирования используют различные методы дифференциального окрашивания хромосом (G-, R-, C-, Q-методы). Процедура окрашивания занимает несколько минут и приводит к появлению рисунка поперечной исчерченности, специфичного для каждой хромосомы. Световое микроскопирование окрашенных препаратов является самым трудоемким этапом всего исследования, требующим высокой квалификации. Для выявления хромосомных аномалий необходимо проанализировать не менее 30 метафазных пластинок. Большой эффективностью обладают методы компьютерного анализа хромосом.