Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Клеточная селекция

.docx
Скачиваний:
85
Добавлен:
14.02.2015
Размер:
34.07 Кб
Скачать

Клеточная селекция

Клеточная селекция основана на высокой изменчивости популяции соматических клеток, усилении изменчивости с помощью различных мутагенов и на разработке селективных систем, позволяющих выявить и отобрать генетически измененные клоны клеток (мутантные, рекомбинантные и др.). Благодаря свойству тотипотентности из этих клеток регенерируют целые растения.

Спонтанные мутации в популяции клеток наблюдаются редко, поэтому для повышения частоты мутаций используют индуцированный мутагенез. Получение мутантных форм при использовании селекции на клеточном уровне складывается из следующих этапов: 1) обработка мутагеном суспензии клеток или протопластов; 2) перенесение суспензии в селективные условия; 3) выделение развивающихся колоний; 4) отбор измененных резистентных к селективному фактору клонов; 5) индукции органогенеза; 6) регенерация измененных растений.

Методом клеточной селекции получены: линии кукурузы, устойчивые к гельминтоспориозу; линии картофеля: резистентные к фитофторе; растения табака, устойчивые к вирусу табачной мозаики. В культуре клеток получены мутанты с повышенным синтезом незаменимых аминокислот. Так, отобраны штампы клеток моркови и табака, синтезирующие в 20-30 раз больше свободного триптофана по сравнению с исходными родительскими культурами. Этим способом получен целый ряд клеточных линий картофеля, моркови, риса, способных к сверхсинтезу лизина, метионина, пролина, фенилаланина, глицина. Это реальный путь создания растений с повышенным содержанием аминокислот, особенно незаменимых. Используя различные селективные системы, можно вести направленную селекцию по различным хозяйственно-ценным признакам, как то устойчивость к гербицидам, болезням, к различным стрессовым воздействиям (засоление, затопление, низкие и высокие температуры и др.)

Для получения мутантов в каждом случае необходимо разработать схему селекции и доказать генетическую природу измененных клеточных линий. Полученные изменения не всегда бывают связаны с мутациями, а могут носить модификационный характер и не наследоваться. Доказательством мутации является совокупность следующих критериев: 1)частота спонтанно измененных клеток должна быть очень низка; 2) она значительно повышается при использовании мутагенов; 3) измененные клетки способны делиться и длительно расти; 4)стабильность измененного признака сохраняется и при отсутствии селективного давления; 5) обнаруживается продукт измененного гена (морфологические и биохимические маркеры).

Эффективность мутагена в культуре тканей повышается на гаплоидном уровне благодаря проявлению всех рецессивных мутаций в ранних поколениях, а также в культуре протопластов из-за их выравненности при изолировании из однородных тканей. Особенно перспективными источником выделения разнообразных мутаций являются протопласты гаплоидных растений.

Мутагенез и клеточная селекция как в случае соматических, так и половых клеток являются эффективными способами получения генетически измененных форм и новых сортов растений.

В результате генетической изменчивости in vitro возникают сомоклональные варианты – растения, отклоняющиеся от родительского типа. Сомоклональная вариабельность имеет несколько причин: перемещение подвижных генетических элементов, инверсии, траслокации, делеции, генные перестройки, связанные с дифференцировкой, соматической кроссинговер. Наследственная изменчивость в культуре клеток может иметь не только генетическую, но и эпигенетическую природу, то есть возникает вследствие изменения действия генов.

Особый интерес представляют сомоклоныльные варианты злаков как источник получения ценных генотипов. Получены линии пшеницы, ячменя, риса, варьирующие по таким очень консервативным признакам, как высота растений, длина остей, окраска зерна, форма колоса, электрофоретические спектры запасных белков. Сомоклональные варианты успешно используются как эффективный источник изменчивости для улучшения сортов сельскохозяйственных культур.

Биотехнология в растениеводстве - улучшение технологий в селекции растений

Современная биотехнология растений - сумма технологий, которые развиты по молекулярной и клеточной биологии растений, - новая стадия в развитии технологии селекции растений. С помощью этих технологий улучшения признаков может происходить на уровне индивидуального гена, а отдельные гены, определяющие определенную признак, могут быть идентифицированы. За ними может быть проведен отбор, их можно изолировать, ввести, удалить или модифицировать в генотипе растения или в сорте. Вклад биотехнологии в сельскохозяйственное производство заключается в облегчении традиционных методов селекции растений, разработке новых технологий, позволяющих повысить эффективность сельского хозяйства. Методами генетической и клеточной инженерии созданы высокопродуктивные и устойчивые против вредителей, болезней, гербицидов сорта сельскохозяйственных растений. Разработано технику оздоровления растений от накопления инфекций, что особенно важно для культур, которые размножаются вегетативно (картофель и др.). Одной из актуальных проблем является возможность управлять процессом азотфиксации, в том числе возможность введения генов азотфиксации в геном полезных растений, а также управления процессами фотосинтеза. Ведутся исследования по улучшению аминокислотного состава растительных белков, разрабатываются новые регуляторы роста растений, микробиологические средства защиты растений от вредителей и болезней, бактериальные удобрения. На современном этапе развития селекции для его интенсификации эффективное использование таких биотехнологических методов, как культура изолированных тканей, клеток и органов растений, клеточная селекция и генетическая инженерия, которые дают возможность за сравнительно короткие сроки создать и размножить ценный исходный высокопроизводительный материал, гетерозисных гибриды и сорта сельскохозяйственных растений. Разработка основ метода культуры тканей растительных организмов имеет сравнительно короткую историю и начинается с исследований, выполненных Габерландтом в 1902 г. Однако каждое открытие, сделанное в этой области, нашло применение в прикладных исследованиях.

Все проблемы, которые разрабатывают в культуре in vitro, можно разделить на три основные группы: n сохранения генетической информации клеток (микроклональное размножения растений и депонирования, культура зародышей, пыльников и семенных зачатков); n изменение генетической информации способом мутагенеза под влиянием физических и химических факторов (культура каллуса, клеточных суспензий, изолированных протопластов); n перенос и восстановление генетической информации (генно-инженерное конструирование растений с новыми признаками, соматическая гибридизация).

Одним из распространенных направлений метода культуры тканей является микроклональное размножения, при котором получают генетически идентичны формы, что способствует сохранению генетически однородного посадочного материала. Как эксплантатов можно использовать пазушные почки, молодые листья, некоторые элементы цветов и соцветий. Однако такой вид размножения требует конкретизации метода для каждой сельскохозяйственной культуры в связи с особенностями ее генотипа. Технология микроклонального размножения любой культуры объединяет четыре основных этапа: ввод исходной формы в стерильную культуру, собственно микроразмножения, укоренение размноженных побегов, перевод стерильной культуры в условиях открытого грунта. Разработка средств вегетативного размножения элитных растений, гетерозисных гибридов и сортов in vitro позволяет решить проблему быстрого размножения форм, имеющих практическую ценность, а также сохранения материала для использования в рекуррентные селекции.

Микроклональное размножения имеет определенные преимущества по сравнению с традиционными методами размножения: выращивание в искусственных условиях (контролируемых) с меристематических тканей позволяет достичь извлечения вирусов и других патогенных микроорганизмов и получить здоровый посадочный материал; рост растений можно поддерживать в течение многих лет; методом культуры можно размножать формы , не размножаются вегетативно или не дают жизнеспособного семян; можно выбирать генотипы, устойчивые к неблагоприятным условиям выращивания: экстремальные температуры, засуха, засоление и закисление субстрата, угнетающее действие гербицидов и др., а также отбор продуктивных форм в условиях in vitro, скорость и коэффициент размножения достигает 1:1000000 и дает возможность вдвое-втрое сократить сроки отбора и получения новых растений в селекционных исследованиях.

На современном этапе существует несколько различных детально разработанных методов микроклонального размножения. Различаются они по состоянию исходных клеток и тканей, которые принимают для получения микроклонов. Важнейшим требованием технологии является гарантирование полной стерильности и оптимальных условий для клеточного деления и дифференциации исходной ткани. Затем следует добиться образования большого количества микроклонов и обеспечить их укоренения. Чтобы эффективность микроклонального размножения была высокой, нужно на всех этапах поддерживать оптимальные условия выращивания. Для этого для каждой культуры разрабатывают конкретную методику микроклонального размножения.

Укоренившиеся растения в случае необходимости размещают на депонирование пониженных температур. Это очень важный процесс, поскольку он позволяет задерживать развитие растений и таким образом длительное время сохранять их без пересадки, используя при необходимости. Для переноса стерильных растений в почву надо отбирать среди них здоровые, со светлой, хорошо развитой корневой системой. В репродуцированные культуре тканей видимых морфологических отклонений нет. Генетическая стабильность изолированной культуры наблюдается даже после многократных пассажей, что открывает новые возможности в сохранении генофонда сельскохозяйственных растений. Сохранение и дальнейшее размножение растений в культуре in vitro приобретает большое значение в связи с рекуррентным отбором, поскольку без него невозможно создание гибридов на ЧМ-основе (чоловичостерильний основе). Из выращенных с помощью культуры in vitro маточных растений и корнеплодов получают высококачественные семена. В селекционной практике одновременно с микроклональное размножение растений широко используют метод каллусных культур из эксплантов различных органов, которые являются дополнительным резервом размножения селекционного материала. Он дает возможность практически использовать в селекционном процессе новый тип изменчивости - сомаклональну изменчивость. Каллусных культуры многих сельскохозяйственных растений характеризуются большой нестабильностью. Генетическая вариабельность соматических клеток является одной из причин неоднородности растений, полученных из каллусных тканей. Калусогенезу - это первый этап на пути получения сомаклональних вариантов требует перепрограммирования способов развития клетки. Клетка, переведенная в условия культивирования in vitro, сохраняет свою основную генетическую информацию о целом организм и при наличии соответствующих условий может реализовать ее. Однако физические и химические факторы культивирования, обладают мутагенным действием, а также генетическая гетерогенность соматических клеток эксплантатов создают предпосылки для получения генетически измененных растений. Метод получения сомаклональнои изменчивости позволяет индуцировать не только изменчивость генома, но и плазмоны. В основе феномена сомаклональнои изменчивости лежат сложные процессы структурной и функциональной перестройки генетического аппарата клеток. Используя его, уже получено формы многих сельскохозяйственных культур с ценными признаками. Одной из важных проблем в селекционно-генетических исследованиях перехреснозапильних растений является использование гетерозиса. Основной и наиболее эффективный метод получения стабильных линий является экспериментальная гаплоидия. Исключая многократное самоопыления растений, она позволяет получать гомозиготный материал из обогащенных в генетическом отношении гибридов. Для получения гаплоидных растений используют культуру пыльников, завязи и семенных зачатков. Индукция гаплоидов зависит от генетических свойств растений-доноров, фазы развития семенников, размещение цветоносов на растении и ряда других факторов. Увеличение количества гаплоидов наблюдается в случае изъятия неоплодотворенных семенных зачатков из раскрытых цветков, а также в случае опыления облученным пыльцой донорских растений. Гаплоидов обнаружено во многихсельскохозяйственных культур. Способ получения их в культуре in vitro дает возможность использовать явление гаплоидии не только в генетических исследованиях, но и в практической селекции.

Гетерогенность клеточной популяции суспензионных культур дает возможность получить значительную вариабельность признаков у растений-регенерантов и открывает широкие возможности для генетических и селекционных исследований. Химические компоненты питательной среды и физические условия могут выступать и как мутагенные, экстремальные факторы, вызывающие изменения в нуклеиновых и белковом обменах, структуре, форме и функциях клетки. В данном случае клеточная популяция в условиях культуры in vitro характеризуется физиологической, цитологической и генетической гетерогенностью. Появляются мутанты с измененным морфогенезом, которые можно опереться в селекционно-генетических исследованиях. По клеточной селекции отбор клеточных линий и растений с новыми унаследованными признаками осуществляют на уровне клеток, культивируемых in vitro. Способы культивирования растительных клеток и регенерация из них растений разработаны для многих важных сельскохозяйственных растений. Перечень мутантов с важными сельскохозяйственными признаками, селекцию которых осуществляют на клеточном уровне, очень велик. К ним относятся мутанты, устойчивые к стрессовым факторам, гербицидов, различных заболеваний, засоление и закисление субстрата.

В связи с тем, что возможности совершенствования растений с помощью рекомбинации практически неисчерпаемы, главной задачей является поиск методов управления этим процессом и эффективного выбора ценных генотипов с желаемым комплексом признаков и свойств. Это стало возможным благодаря разработке методов клеточной и генетической инженерии - культуры протопластов и соматической гибридизации и введения генетического материала в растительные клетки и протопласты с помощью трансформируемой ДНК. Первым этапом в этом направлении исследований является разработка метода получения и культивирования жизнеспособных протопластов. Получение жизнеспособных протопластов обусловлено многими факторами, а именно: состав и концентрация ферментов, выбор осмотического раствора, рН-среды, физиологическое состояниеткани, условия перединкубацийнои культивирования. Выделенные протопласты в дальнейшем используют для получения соматических гибридов и соматических цибридов, пересадки органелл, ввод чужеродной информации. Слияние протопластов и соматическая гибридизация позволяют: n скрещивать филогенетически отдаленные виды растений, которые невозможно скрестить обычным половым способом; n получать асимметричные гибриды, которые несут весь генный набор одного из родителей вместе с несколькими хромосомами (или несколькими генами или только органеллами и цитоплазмой) второго; n создавать систему гибридизации, которая исключает одновременно слияния трех и более родительских клеток; получать растения, гетерозиготные по неядерными генами; n преодолевать ограничения, налагаемые генеративных системами несовместимости; n скрещивать формы, которые невозможно гибридизировать половым способом через аномалии в морфогенезе или гаметогенезе родителей; n гибридизировать клетки, несущие различные эпигенетические программы. Используя метод соматической гибридизации изолированных протопластов, селекционеры выводят гибриды от физиологически несовместимых видов сельскохозяйственных культур.

Главными факторами, которые повышают производительность сельского хозяйства, является совершенствование способов выращивания растений, создание продуктивных сортов, улучшения питания растений и защиту урожая. Большое значение для повышения урожая и его сохранности принадлежит также удобрениям и средствам защиты растений. Генетическая инженерия открывает перед селекцией растений новые перспективы, связанные с возможностью переноса в них генов от бактерий, грибов, экзотических растений и даже человека и животных, что является недостижимым для экспериментального мутагенеза и традиционной селекции, в том числе и генов устойчивости. Революционным свершением в генетической трансформации растений стало обнаружение природного вектора - агробактерий для переноса генов и разработка метода микробомбардування растительных объектов микрочастицами металлов с предварительно нанесенной чужеродной ДНК. Три выдающиеся достижения физиологии растений создали основу для интеграции технологии рекомбинантных ДНК в генно-инженерной биотехнологии растений. Во-первых, открытие фитогормонов, регулирующих рост и развитие растений. Во-вторых, разработка методов культивирования клеток и тканей растений in vitro (эти методы дали возможность выращивать клетки, ткани и целые растения в стерильных условиях и проводить их селекцию на селективных средах). В-третьих, установление феномена тотипотентности соматических растительных клеток, который открыл путь к регенерации из них целых растений.

На сегодня генетическая инженерия сельскохозяйственных растений развивается преимущественно в русле классической селекции. Основные усилия ученых сосредоточены на защите растений от неблагоприятных (биотических и абиотических) факторов, снижении потерь при хранении и улучшении качества продукции растениеводства. В частности, это повышение устойчивости к болезням и вредителям, заморозков или засоления почв, удаления нежелательных компонентов из растительных масел, изменение свойств белка и крахмала в пшеничной муке, улучшения лежкости и вкусовых качеств плодов томата и т.д. Сравнению с традиционной селекцией, основные инструменты которой - скрещивание и отбор, главные преимущества генной инженерии - возможность использования принципиально новых генов, определяющих агрономически важные признаки и новые молекулярно-генетические методы мониторинга трансгенов (молекулярные маркеры генов), которые во много раз ускоряют процесс создания трансгенных растений. Селекционеров привлекает возможность целенаправленного генетического "ремонта" сельскохозяйственных растений. Важным направлением является создание генетически модифицированных растений (ГМР) с признаком мужской стерильности. Кроме того, благодаря генетической модификации, растения могут выполнять не свойственную им ранее роль. Это, например, корнеплоды сахарной свеклы, накапливающих, вместо сахарозы, низкомолекулярные фруктозы, или бананы, которые используют как съедобную вакцину. Благодаря введению генов бактерий, высшие растения приобретают свойства участвовать в разрушении чужеродных органических соединений (ксенобиотиков), которые загрязняют окружающую среду. Выращивание ГМР, устойчивых к широкому спектру болезней и насекомых-вредителей, может существенно снизить, а в дальнейшем свести к минимуму пестицидную нагрузки на окружающую среду. Рост площадей под трансгенными культурами в развитых странах происходит намного интенсивнее, чем в развивающихся странах. На сегодня украинские селекционеры испытывают трансгенные сорта кукурузы, сахарной свеклы и рапса, устойчивые к гербицидам; кукурузы, устойчивой к кукурузного мотылька; и картофеля, устойчивого к колорадскому жуку. Создана система органов с привлечением генетиков, селекционеров, генных инженеров, экологов, медиков, токсикологов, которые оценивают трансгенные сорта для определения потенциального воздействия на человека, животныхи окружающую среду. И только после таких экспертиз сорта будут допущены к испытанию с соблюдением всех требований к трансгенных сортовузаконенных в Европейском Союзе. При рассмотрении проблемы возможного влияния трансгенных растений на окружающую среду специалисты, в основном, обсуждают такие важные аспекты: n сконструированы гены будут переданы с пыльцой близкородственными диким видам, и их гибридное потомство приобретет свойства повышенной семенной продуктивности или способности конкурировать с другими растениями; n трансгенные сельскохозяйственные растения станут сорняками для сельского хозяйства и вытеснят растения, растущие рядом; n трансгенные растения станут прямой угрозой человеку, домашним и диким животным (например, ввиду своей токсичности или аллергенности). Еще одним аспектом влияния трансгенных растений на окружающую среду является получение трансгенных растений с лучшей способностью использовать минеральные соединения, что, кроме усиления роста, будет препятствовать их смыванию в грунтовые воды и попадание в источники водоснабжения.

Гарантией против нежелательных последствий генетической модификации растений является законодательное регулирование распространения ГМР и разработка связанных с этим методов оценки экологического риска.