- •Введение
- •Кинематика
- •5. Кинематика вращательного движения.
- •Динамика материальной точки
- •6. Первый закон Ньютона.
- •8. Механические системы.
- •9. Масса.
- •10.Импульс.
- •11.Второй закон Ньютона
- •12.Принцип независимости действия сил.
- •13.Третий закон Ньютона
- •14.Закон сохранения импульса
- •15.Закон движения центра масс.
- •16. Силы в механике.
- •1) Силы тяготения (гравитационные силы).
- •17. Работа, энергия, мощность.
- •18. Кинетическая и потенциальная энергия механической системы
- •19.Закон сохранения энергии.
- •20. Соударения
- •Механика твердого тела
- •21. Момент инерции.
- •22.Кинетическая энергия вращения.
- •23. Момент силы.
- •24.Основное уравнение динамики вращательного движения твердого
- •25. Момент импульса и закон его сохранения.
- •26.Сопоставим основные величины и соотношения для поступательного движения тела и для его вращения вокруг неподвижной оси.
- •Деформации твердого тела
- •27. Деформации твердого тела
- •28. Закон Гука.
- •Элементы механики жидкостей
- •29. Давление в жидкости и газе.
- •30.Уравнение неразрывности.
- •31 .Уравнение Бернулли.
- •32. Вязкость (внутреннее трение)
- •33.Два режима течения жидкостей.
- •34.Методы определения вязкости
- •Потенциальное поле сил.
- •35.Поле сил тяготения.
- •36. Космические скорости.
- •Элементы специальной теории относительности
- •37. Преобразования Галилея
- •38.Постулаты Эйнштейна.
- •39.Преобразования Лоренца.
- •40. Основные соотношения релятивистской динамики.
- •Свободные колебания
- •1. Колебания. Общий подход к изучению колебаний различной физичес кой природы.
- •2. Гармонические колебания и их характеристики.
- •3. Дифференциальное уравнение гармонических колебаний.
- •4. Метод векторных диаграмм.
- •5. Экспоненциальная форма записи гармонических колебаний.
- •6. Механические гармонические колебания.
- •7. Энергия материальной точки, совершающей гармонические колебания.
- •8. Гармонический осциллятор.
- •9. Пружинный маятник.
- •10. Математический маятник.
- •11 .Физический маятник.
- •12.Сложение гармонических колебаний.
- •13. Биения.
- •14. Разложение Фурье.
- •15. Сложение взаимно перпендикулярных гармонических колебаний одинаковой частоты.
- •16.Линейно поляризованные колебания.
- •17. Циркулярно поляризованные колебания.
- •18 .Фигуры Лиссажу.
- •Затухающие и вынужденные колебания
- •19. Затухающие колебания.
- •20.Дифференциальное уравнение свободных затухающих колебаний линейной системы
- •21. Декремент затухания.
- •22.Добротность колебательной системы.
- •Волны в упругой среде.
- •23.Волновой процесс.
- •24.Упругие волны.
- •36. Упругая гармоническая волна.
- •37.Бегущие волны.
- •25.Уравнение плоской волны.
- •25.Фазовая скорость.
- •26. Уравнение сферической волны.
- •28.Принцип суперпозиции.
- •29.Групповая скорость.
- •30. Интерференция волн.
- •31. Стоячие волны.
- •32. Эффект Доплера.
- •2)Приемник приближается к источнику, а источник покоится:
- •3)Источник приближается к приемнику, а приемник покоится:
- •4)Источник и приемник движутся друг относительно друга.
- •1. Статистический и термодинамический методы исследования.
- •2. Термодинамическая система.
- •3. Температура.
- •4. Идеальный газ.
- •5.Закон Бойля-Мариотта.
- •6. Закон Авогадро,
- •7. Закон Дальтона.
- •8 .Закон Гей-Люссака.
- •9. Уравнение состояния идеального газа.
- •10.Основное уравнение молекулярно-кинетической теории идеальных газов.
- •11 .Средняя квадратичная скорость молекул идеального газа:
- •18.Средняя длина свободного пробега молекул.
- •19.Эксперименты, подтверждающие молекулярно-кинетическую теорию.
- •20.Явления переноса.
- •21 .Теплопроводность.
- •22. Диффузия.
- •23.Внутреннее трение (вязкость).
- •24.Внутренняя энергия термодинамической системы.
- •25. Число степеней свободы.
- •26.3Акон Больцмана о равномерном распределении энергии по степеням свободы (закон равнораспределения).
- •27. Первое начало термодинамики.
- •28.Работа газа при его расширении.
- •29. Теплоемкость.
- •30.Молярная теплоемкость при постоянном объеме.
- •31 .Молярная теплоемкость при постоянном давлении. Уравнение Майера.
- •36. Работа газа в адиабатическом процессе.
- •39. Кпд кругового процесса.
- •40. Обратимый и необратимый процессы.
- •41 .Энтропия.
- •42. Изменение энтропии.
- •Изменение энтропии в процессах идеального газа
- •43. Статистическое толкование энтропии.
- •44. Принцип возрастания энтропии.
- •45. Второе начало термодинамики.
- •46.Третье начало термодинамики.
- •47.Тепловые двигатели и холодильные машины.
- •48. Теорема Карно
- •50.Уравнение Ван-дер-Ваальса.
- •51. Изотермы реальных газов.
- •52. Внутренняя энергия реального газа.
- •53.Жидкости и их описание.
- •54. Поверхностное натяжение.
- •55. Смачивание.
- •56. Давление под искривленной поверхностью жидкости.
- •57. Капиллярные явления.
- •58. Кристаллические и аморфные твердые тела.
- •59. Типы кристаллов.
- •60.Дефекты в кристаллах.
- •61 .Теплоемкость твердых тел.
- •62. Изменение агрегатного состояния.
- •63.Фазовые переходы.
- •64.Диаграмма состояния.
- •65.Уравнение Клапейрона-Клаузиуса
- •66.Анализ диаграммы состояния.
- •Приложение
- •6.Вектор.
- •12.Градиент.
- •13.Поток поля через поверхность.
- •14.Производная по объему.
- •15. Дивергенция векторного поля.
- •17.Оператор Лапласа.
- •18.Ротор векторного поля.
- •19.Теорема Стокса.
- •Греческий алфавит
- •Приставки к обозначению единиц
- •Основные физические постоянные
36. Упругая гармоническая волна.
Упругая волна называется гармонической, если соответствующие ей колебания частиц среды являются гармоническими.
Пусть гармоническая волна распространяется со скоростью υ вдоль оси ОХ. Обозначим смещения частиц среды через
Для данного момента времени t зависимость между смещением частиц среды и расстоянием х этих частиц от источника колебаний О можно представить в виде графика волны.
Отличие графика волны от графика гармонического колебания:
график волны представляет зависимость смещения всех частиц среды от расстояния до источника колебаний в данный момент времени ;
график гармонического колебания это зависимость смещения данной частицы от времени
Длиной волны λ называется расстояние между ближайшими частицами, колеблющимися в одинаковой фазе.
Длина волны равна расстоянию, на которое распространяется гармоническая волна за время, равное периоду колебаний Т:
или
где п — частота колебаний, υ — скорость распространения волны.
Волновым фронтом называется геометрическое место точек, до которых доходят колебания к определенному моменту времени t.
Волновой поверхностью называется геометрическое место точек, колеблющихся в одинаковой фазе.
Волновых поверхностей можно провести бесчисленное множество, а волновой фронт в каждый момент времени — один.
37.Бегущие волны.
Бегущими волнами называются волны, которые переносят в пространстве энергию.
Перенос энергии количественно характеризуется вектором плотности потока энергии (вектор Умова). Направление этого вектора совпадает с направлением распространения энергии, а его модуль равен энергии, переносимой волной за единицу времени через единичную площадку, расположенную перпендикулярно волне.
Важными примерами бегущих волн являются плоская и сферическая волны.
Волна называется плоской, если ее волновые поверхности представляют совокупность плоскостей, параллельных друг другу.
Волна называется сферической, если ее волновые поверхности имеют вид концентрических сфер. Центры этих сфер называются центром волны.
25.Уравнение плоской волны.
Пусть точки, которые расположены в плоскости х = 0, колеблются по закону . И пустьυ — скорость распространения колебаний в данной среде.
Колебания частицы В среды (см. рисунок), расположенной на расстоянии х от источника колебаний О, будут происходить по тому же закону. Но, поскольку для прохождения волной расстояния х требуется время , то ее колебания будут отставать по времени от колебания источника на τ.
Уравнение колебаний частиц, лежащих в плоскости х, имеет вид
Следовательно, функция является не только периодической функцией времени, но и периодической функцией координаты х.
В общем случае уравнение плоской волны, распространяющейся вдоль положительного направления оси х в среде, не поглощающей энергию, имеет вид
здесь: А = const — амплитуда волны,
ω — циклическая частота,
—начальная фаза волны,
—фаза плоской волны.
Если определить волновое число:
то уравнение плоской бегущей волны можно записать в виде
или в экспоненциальной форме
где физический смысл имеет только вещественная часть.
В общем виде уравнение плоской волны, распространяющейся в направлении имеет вид: