- •Введение
- •Кинематика
- •5. Кинематика вращательного движения.
- •Динамика материальной точки
- •6. Первый закон Ньютона.
- •8. Механические системы.
- •9. Масса.
- •10.Импульс.
- •11.Второй закон Ньютона
- •12.Принцип независимости действия сил.
- •13.Третий закон Ньютона
- •14.Закон сохранения импульса
- •15.Закон движения центра масс.
- •16. Силы в механике.
- •1) Силы тяготения (гравитационные силы).
- •17. Работа, энергия, мощность.
- •18. Кинетическая и потенциальная энергия механической системы
- •19.Закон сохранения энергии.
- •20. Соударения
- •Механика твердого тела
- •21. Момент инерции.
- •22.Кинетическая энергия вращения.
- •23. Момент силы.
- •24.Основное уравнение динамики вращательного движения твердого
- •25. Момент импульса и закон его сохранения.
- •26.Сопоставим основные величины и соотношения для поступательного движения тела и для его вращения вокруг неподвижной оси.
- •Деформации твердого тела
- •27. Деформации твердого тела
- •28. Закон Гука.
- •Элементы механики жидкостей
- •29. Давление в жидкости и газе.
- •30.Уравнение неразрывности.
- •31 .Уравнение Бернулли.
- •32. Вязкость (внутреннее трение)
- •33.Два режима течения жидкостей.
- •34.Методы определения вязкости
- •Потенциальное поле сил.
- •35.Поле сил тяготения.
- •36. Космические скорости.
- •Элементы специальной теории относительности
- •37. Преобразования Галилея
- •38.Постулаты Эйнштейна.
- •39.Преобразования Лоренца.
- •40. Основные соотношения релятивистской динамики.
- •Свободные колебания
- •1. Колебания. Общий подход к изучению колебаний различной физичес кой природы.
- •2. Гармонические колебания и их характеристики.
- •3. Дифференциальное уравнение гармонических колебаний.
- •4. Метод векторных диаграмм.
- •5. Экспоненциальная форма записи гармонических колебаний.
- •6. Механические гармонические колебания.
- •7. Энергия материальной точки, совершающей гармонические колебания.
- •8. Гармонический осциллятор.
- •9. Пружинный маятник.
- •10. Математический маятник.
- •11 .Физический маятник.
- •12.Сложение гармонических колебаний.
- •13. Биения.
- •14. Разложение Фурье.
- •15. Сложение взаимно перпендикулярных гармонических колебаний одинаковой частоты.
- •16.Линейно поляризованные колебания.
- •17. Циркулярно поляризованные колебания.
- •18 .Фигуры Лиссажу.
- •Затухающие и вынужденные колебания
- •19. Затухающие колебания.
- •20.Дифференциальное уравнение свободных затухающих колебаний линейной системы
- •21. Декремент затухания.
- •22.Добротность колебательной системы.
- •Волны в упругой среде.
- •23.Волновой процесс.
- •24.Упругие волны.
- •36. Упругая гармоническая волна.
- •37.Бегущие волны.
- •25.Уравнение плоской волны.
- •25.Фазовая скорость.
- •26. Уравнение сферической волны.
- •28.Принцип суперпозиции.
- •29.Групповая скорость.
- •30. Интерференция волн.
- •31. Стоячие волны.
- •32. Эффект Доплера.
- •2)Приемник приближается к источнику, а источник покоится:
- •3)Источник приближается к приемнику, а приемник покоится:
- •4)Источник и приемник движутся друг относительно друга.
- •1. Статистический и термодинамический методы исследования.
- •2. Термодинамическая система.
- •3. Температура.
- •4. Идеальный газ.
- •5.Закон Бойля-Мариотта.
- •6. Закон Авогадро,
- •7. Закон Дальтона.
- •8 .Закон Гей-Люссака.
- •9. Уравнение состояния идеального газа.
- •10.Основное уравнение молекулярно-кинетической теории идеальных газов.
- •11 .Средняя квадратичная скорость молекул идеального газа:
- •18.Средняя длина свободного пробега молекул.
- •19.Эксперименты, подтверждающие молекулярно-кинетическую теорию.
- •20.Явления переноса.
- •21 .Теплопроводность.
- •22. Диффузия.
- •23.Внутреннее трение (вязкость).
- •24.Внутренняя энергия термодинамической системы.
- •25. Число степеней свободы.
- •26.3Акон Больцмана о равномерном распределении энергии по степеням свободы (закон равнораспределения).
- •27. Первое начало термодинамики.
- •28.Работа газа при его расширении.
- •29. Теплоемкость.
- •30.Молярная теплоемкость при постоянном объеме.
- •31 .Молярная теплоемкость при постоянном давлении. Уравнение Майера.
- •36. Работа газа в адиабатическом процессе.
- •39. Кпд кругового процесса.
- •40. Обратимый и необратимый процессы.
- •41 .Энтропия.
- •42. Изменение энтропии.
- •Изменение энтропии в процессах идеального газа
- •43. Статистическое толкование энтропии.
- •44. Принцип возрастания энтропии.
- •45. Второе начало термодинамики.
- •46.Третье начало термодинамики.
- •47.Тепловые двигатели и холодильные машины.
- •48. Теорема Карно
- •50.Уравнение Ван-дер-Ваальса.
- •51. Изотермы реальных газов.
- •52. Внутренняя энергия реального газа.
- •53.Жидкости и их описание.
- •54. Поверхностное натяжение.
- •55. Смачивание.
- •56. Давление под искривленной поверхностью жидкости.
- •57. Капиллярные явления.
- •58. Кристаллические и аморфные твердые тела.
- •59. Типы кристаллов.
- •60.Дефекты в кристаллах.
- •61 .Теплоемкость твердых тел.
- •62. Изменение агрегатного состояния.
- •63.Фазовые переходы.
- •64.Диаграмма состояния.
- •65.Уравнение Клапейрона-Клаузиуса
- •66.Анализ диаграммы состояния.
- •Приложение
- •6.Вектор.
- •12.Градиент.
- •13.Поток поля через поверхность.
- •14.Производная по объему.
- •15. Дивергенция векторного поля.
- •17.Оператор Лапласа.
- •18.Ротор векторного поля.
- •19.Теорема Стокса.
- •Греческий алфавит
- •Приставки к обозначению единиц
- •Основные физические постоянные
3. Дифференциальное уравнение гармонических колебаний.
Первая (скорость) и вторая (ускорение) производные по времени от гармонически колеблющейся величины s также совершают гармонические колебания с той же циклической частотой:
Из последнего уравнения видно, что s удовлетворяет уравнению
или
Это уравнение называется дифференциальным уравнением гармонических колебаний. Его решение:
s = A·cos(ωt + φ).
4. Метод векторных диаграмм.
Г
Из произвольной точки О, выбранной на оси х, под углом φ, равным начальной фазе
колебания, откладывается вектор А, модуль которого равен амплитуде А, рассматриваемого колебания. Если этот вектор будет вращаться
вокруг точки О с угловой скоростью со, то проекция вектора на ось х будет совершать колебания по закону s = A·cos(ωt + φ).
5. Экспоненциальная форма записи гармонических колебаний.
Согласно формуле Эйлера для комплексных чисел
где — мнимая единица. Поэтому уравнение гармонического колебанияs = A·cos(ωt +φ) можно записать в комплексной экспоненциальной форме:
Физический смысл имеет только вещественная часть комплексной функции , которая и представляет собой гармоническое колебание:
Re() = A cos(ωt +φ) = s
6. Механические гармонические колебания.
Пусть материальная точка совершает прямолинейные гармонические
к
Смещение: х= A·cos(ωt + φ)
Скорость:= = -Аωcos(ωt + φ + )
Ускорение:
a = = =Аω2 cos(ωt + φ +)
Амплитуды скорости и ускорения равны Aω и Aω2
Фаза скорости отличается от фазы смещения на , а фаза ускорения на.
Сила, действующая на колеблющуюся материальную точку массой т равна
Таким образом, сила пропорциональна смещению материальной точки и
направлена в сторону, противоположную смещению (к положению равновесия).
Такая зависимость от смещения характерна для упругих сил и поэтому силы,
которые аналогичным образом зависят от смещения, называются
квазиупругими.
7. Энергия материальной точки, совершающей гармонические колебания.
Кинетическая энергия материальной точки:
Потенциальная энергия материальной точки, совершающей гармонические колебания под действием квазиупругой силы:
Полная энергия:
остается постоянной, с течением времени происходит только превращение кинетической энергии в потенциальную и обратно.
8. Гармонический осциллятор.
Гармоническим осциллятором называется система, совершающая колебания, описываемые дифференциальным уравнением
Примерами гармонического осциллятора являются пружинный, математический и физический маятники и электрический колебательный контур.
9. Пружинный маятник.
Пружинный маятник — это груз массой т, подвешенный на абсолютно упругой пружине и совершающий гармонические колебания под действием упругой силы
F
где — жесткость пружины.
Уравнение движения маятника
или
Сравнивая это уравнение с уравнением движения
гармонического осциллятора , мы видим, что пружинный маятник совершает колебания по закону с циклической частотой и периодом:
Потенциальная энергия пружинного маятника:
Если на маятник действует сила трения, пропорциональная скорости ,где r — коэффициент сопротивления, то колебания маятника будут
затухающими и закон движения маятника будет иметь вид или