
- •Введение
- •Признаки объектов коллоидной химии
- •Геометрические параметры поверхности
- •Классификация дисперсных систем
- •1. Классификация дисперсных систем в зависимости от размера коллоидных частиц
- •3. Классификация дисперсных систем по агрегатному состоянию дисперсной фазы и дисперсионной среды
- •5. Классификация по степени взаимодействия частиц ДФ
- •6. классификации дисперсных систем по характеру распределения фаз, образованных дисперсными частицами и дисперсионной средой
- •7. Суспензоиды и молекулярные коллоиды
- •Классификация поверхностных явлений
- •Поверхностная энергия Гиббса. Поверхностное натяжение
- •Методы определения поверхностного натяжения
- •Метод капиллярного поднятия
- •Метод максимального давления пузырьков
- •Метод счета капель (сталагмометрический)
- •Метод отрыва кольца
- •Внутренняя (полная) удельная поверхностная энергия. Зависимость энергетических параметров поверхности от температуры
- •Теории адгезии
- •Смачивание и краевой угол
- •Связь работы адгезии с краевым углом
- •Инверсия смачивания
- •Смачивание реальных твердых тел
- •Теплота смачивания
- •Растекание жидкости. Эффект Марангони
- •Фундаментальное адсорбционное уравнение Гиббса. Гиббсовская адсорбция
- •Поверхностная активность. Поверхностно-активные и инактивные вещества
- •Энергетические параметры адсорбции
- •Адсорбционные взаимодействия
- •Закон Генри
- •Мономолекулярная адсорбция. Изотерма адсорбции Ленгмюра
- •Уравнение Фрёйндлиха
- •Зависимость поверхностного натяжения от концентрации ПАВ
- •Строение адсорбционного слоя на границе раствор—газ
- •Адсорбция на границе твердое тело — раствор
- •Влияние природы среды
- •Влияние свойств адсорбента и адсорбтива
- •Влияние времени, температуры и концентрации раствора
- •Полимолекулярная (потенциальная) теория адсорбции Поляни
- •Теория полимолекулярной адсорбции БЭТ
- •Типы изотерм адсорбции
- •Капиллярные явления
- •Адсорбция газов и паров на пористых телах
- •Классификация пористой структуры
- •Количественные характеристики пористых тел и порошков
- •Теория капиллярной конденсации. Распределение пор по размерам
- •Теория объемного заполнения микропор
- •Ионная адсорбция
- •Образование и строение, двойного электрического слоя
- •Механизм образования двойного электрического слоя
- •Теория Гельмгольца — Перрена
- •Теория Гуи — Чэпмена
- •Теория Штерна
- •Формула мицеллы
- •Влияние различных факторов на электорокинетический потенциал
- •Влияние индифферентных электролитов
- •Влияние неиндифферентных электролитов
- •Влияние рН среды
- •Влияние концентрации коллоидной системы
- •Влияние температуры
- •Влияние природы дисперсионной среды
- •Электрокинетические явления
- •Практическое значение электрокинетических явлений
- •Молекулярно-кинетические и реологические свойства дисперсных систем
- •Броуновское движение и диффузия в коллоидных системах
- •Седиментация и седиментационная устойчивость
- •Закономерности седиментации в гравитационном поле.
- •Седиментация в центробежном поле
- •Седиментационный анализ
- •Вязкость дисперсных систем
- •Агрегативная устойчивость и коагуляция дисперсных систем
- •Процессы в дисперсных системах, обусловленные агрегативной неустойчивостью
- •Факторы агрегативной устойчивости
- •Теории коагуляции электролитами
- •Теория ДЛФО
- •Правила коагуляции
- •Особые явления, наблюдающиеся при коагуляции электролитами
- •Явление неправильных рядов
- •Антагонизм и синергизм электролитов
- •Привыкание коллоидных систем
- •Защита коллоидных частиц и сенсибилизация
- •Кинетика коагуляции
- •Строение мицелл ПАВ. Солюбилизация
- •Свойства растворов высокомолекулярных соединений (молекулярных коллоидов)
- •Общая характеристика высокомолекулярных соединений
- •Набухание и растворение высокомолекулярных соединений
- •Виды набухания полимеров
- •Кинетика набухания полимеров
- •Оптические свойства и методы исследования дисперсных систем
- •Рассеяние света
- •Абсорбция света
- •Окраска коллоидных систем
- •Форма частиц и двойное лучепреломление в потоке (Оптическая анизотропия)
- •Световая и электронная микроскопия
- •Ультрамикроскопия
- •Турбидиметрия
- •Нефелометрия

другом тонких прослоек (каналов), размеры которых соответствуют размерам частиц дисперсной фазы. По существу в этом случае обе фазы являются дисперсными. Такие системы называют биконтинуальными. Пример: пористая среда с частицами и порами дисперсных размеров.
7. Суспензоиды и молекулярные коллоиды
Суспензоиды – высокодисперсные гетерогенные системы, частицы которых представляют собой агрегаты атомов или молекул
Молекулярные коллоиды – гомогенные однофазные системы, устойчивые и обратимые, образующиеся самопроизвольно, с отдельными сольватированными макромолекулы в качестве кинетических частиц.
Растворы ВМС, являясь истинными молекулярными растворами, обладают в то же время многими признаками коллоидного состояния. При самопроизвольном растворении ВМС диспергируются до отдельных макромолекул, однако размеры макромолекул соизмеримы с размерами коллоидных частиц. Также они обладают следующими свойствами, характерными для коллоидных систем способность переходить в золь при замене растворителя, гелеобразование, броуновское движение, диффузия, рассеяние света, образование ассоциатов молекул, размеры которых соизмеримы с размерами частиц высокодисперсных систем (элементы гетерогенности). Поскольку растворы ВМС сочетают свойства молекулярных растворов и коллоидных систем, по предложению Жукова их называют молекулярными коллоидами.
Классификация поверхностных явлений
Поверхностные явления удобно классифицировать в соответствии с объединенным уравнением первого и второго начал термодинамики. для системы его можно записать в следующей форме
dG SdT VdP dS1.2 i dni dq
Где G – энергия Гиббса; S – энтропия; Т – температура; V – объем; Р – давление; - поверхностное натяжение; S1,2 – суммарная площадь раздела фаз; - химический потенциал; n – число молей; - электрический потенциал; q – количество электричества.
Уравнение (1.) выражает приращение энергии Гиббса через алгебраическую сумму приращений других видов энергии. Превращение поверхностной энергии в один из представленных видов энергии отвечает определенным поверхностным явлениям. Стрелки указывают на пять возможных превращений поверхностной энергии:
1)в энергию Гиббса,
2)в теплоту,
З) в механическую энергию,
4)в химическую энергию и
5)в электрическую энергию.
Эти превращения сопровождают такие явления, как изменение реакционной способности с изменением дисперсности, адгезия и смачивание, капиллярность, адсорбция, электрические явления.
Поверхностная энергия Гиббса. Поверхностное натяжение
Межфазная поверхность может существовать только при наличии в системе жидкой или твёрдой фазы. Именно они определяют форму и строение поверхностного слоя - переходной области от одной фазы к другой.
Любое твёрдое или жидкое вещество в простейшем случае состоит из молекул одного вида. Однако состояние тех молекул, которые находятся на поверхности, отличается от состояния молекул, находящихся в объёме твёрдой или жидкой фазы, поскольку они не со всех сторон окружены другими подобными им молекулами. Поверхностные молекулы втягиваются внутрь жидкости или твёрдого тела, потому что испытывают большее притяжение со стороны молекул, находящихся в объёме конденсированной фазы, чем со стороны молекул газа по другую сторону поверхности. Это притяжение заставляет поверхность сокращаться, насколько это возможно, и приводит к возникновению некоторой силы в плоскости поверхности, называемой силой
поверхностного натяжения .