
- •2.Барьерно-транспортная функция поверхностного аппарата клетки.
- •3.Рецепторно-сигнальная функция пак
- •4.Контактная функция пак.
- •5.Локомоторная и индивидуализирующая функции пак.
- •6. Строение и функции эпс.
- •8. Пероксисомы. Строение и функции.
- •9.Митохондрии и энергетический обмен в клетке.
- •10.Немембранные органоиды клетки. Строение и функции. Клеточные включения
- •11.Ядро. Строение и функции.
- •12.Строение днк и понятие о матричных процессах.
- •15.Строение хромосом. Кариотип человека.
- •16.Строение рнк, транскрипция и процессинг рнк.
- •17.Строение белка. Рибосомы. Трансляция.
- •18.Клеточный цикл. Общая характеристика.
- •19.Митоз и его биологическое значение.
- •21.Молекулярные основы канцерогенеза.
- •23.Мейоз и его биологическое значение.
- •24.Геном человека. Строение генов.
- •25.Структура и регуляция действия генов у про- и эукариот.
- •27.Регуляция действия генов на претранскрипционном уровне.
- •28.Регуляция действия генов на транскрипционном уровне.
- •29.Регуляция действия генов на трансляционном и поспрансляционном уровнях.
- •30..Регуляция действия генов на постгранскрипционном уровне
- •31.Медицинские аспекты регуляции действия генов.
- •32.Репарация днк.
- •33.Сперматогенез.
- •34.Овогенез.
- •35.Строение половых клеток.
- •36.Этапы и механизмы оплодотворения.
- •37.Ранние этапы развития зародыша. Бластула. Гаструла.
- •38.Генетический контроль ранних этапов развития.
- •39.Строение и функции зародышевых оболочек.
- •40.Виды хозяев, путей и способов заражения.
- •41.Виды паразитизма и паразитов.
- •42. Дизентерийная амеба. Балантидий.
- •43.Лямблии. Трихомонады. Строение и жизненные циклы.
- •44.Лейшмании. Строение и жизненные циклы.
- •45.Трипаносомы. Строение и жизненные циклы.
- •46.Малярийные плазмодии.
- •48.Печеночный сосальщик.
- •49.Ланцетовидный сосальщик.
- •50.Кошачий сосальщик.
- •51.Легочный сосальщик.
- •52.Кровяные сосальщики.
- •53.Свиной и бычий цепни. Строение и циклы развития.
- •54.Карликовый цепень. Широкий лентец.
- •55.Эхинококк и альвеококк.
- •56.Аскарида.
- •57.Власоглав. Острица.
- •58.Угрица кишечная. Анкилостома. Некатор.
- •59.Трихинелла. Ришта.
- •60.Круглые черви. Геогельминты. Общая характеристика.
- •61.Филярии.
- •62.Вши.
- •63.Блохи.
- •64.Мухи.
- •65.Комары. Жизненные циклы и медицинское значение.
- •66.Мошки. Мокрецы. Москиты.
- •67.Слепни. Оводы.
- •68..Паразитиформные клещи.
- •69.Акариформные клещи.
- •70.Генотип и фенотип, множественный аллелизм.
- •71.Взаимодействия аллельных генов и плейотропия.
- •72.Генотип и фенотип, эпистаз.
- •73.Генотип и фенотип. Комплементарность.
- •74.Генотип, фенотип, полимерия.
- •75.Фенотип. Роль материнских и внутренних факторов. Пенетрантность и экспрессивность.
- •76.Фенотип. Роль факторов внешней среды. Модификации и их характеристика.
- •77.Моногенное наследование (законы Менделя I и п).
- •78.Полигенное наследование (закон Менделя ш).
- •79.Сцепленное наследование и кроссинговер (закон Моргана).
- •80.Хромосомная теория наследственности.
- •81.Классификация изменчивости.
- •82.Комбинативная и эпигеномная изменчивость.
- •83.Изменчивость. Генные мутации.
- •84.Изменчивость. Хромосомные и геномные мутации.
- •85.Генетика пола. Пол и его дифференцировка.
- •87.Генеалогический метод.
- •88..Близнецовый метод генетики человека.
- •89.Цитогенетический метод генетики человека.
- •90.Молекулярно-генетический и биохимический методы.
- •91.Сравнительно-генетический метод и метод гибридизации соматических клеток в генетике человека.
- •92.Пренатальная диагностика наследственных болезней.
- •93.Генные болезни.
- •94.Мультифакториальные болезни человека.
- •95.Хромосомные болезни человека.
- •96.Патогенетическое лечение наследственных болезней.
- •97.Этиологическое лечение наследственных болезней.
- •98.Этиологическое лечение. Генотерапия.
- •99.Медико-генетическое консультирование и прогнозирование наследственных заболеваний.
- •101.Панмиксия, изоляция и естественный отбор в популяциях человека.
- •102.Эффект родоначальника и дрейф генов в популяциях человека.
- •103.Значение популяционного метода в генетике человека.
- •104.Генетика эритроцитарных антигенов.
- •105.Генетика лейкоцитарных антигенов.
- •106.Регенерация органов и тканей
- •107.Биологические аспекты старения.
- •108.Биологический возраст человека.
- •109.Биологические аспекты смерти.
- •110.Антропогенез: сахельантропы, габелисы, эректусы, антецессоры, неандертальцы, неоантропы.
- •111.Методы антропогенеза.
- •112.Понятие о расах и видовое единство человека.
- •113.Филогенез пищеварительной системы хордовых.
- •114.Филогенез кожных покровов и скелета хордовых.
- •115.Филогенез нервной системы хордовых.
- •116.Филогенез кровеносной системы хордовых.
- •117.Филогенез дыхательной системы хордовых.
- •118.Филогенез мочеполовой системы хордовых.
- •119.Онтофилогенетические пороки развития пищеварительной системы.
- •120.Онтофилогенетические пороки сердечно-сосудистой системы человека.
- •121.Онтофилогенетические пороки развития опорно-двигательного аппарата, покровов.
- •122.Онтофилогенетические пороки развития скелета человека.
- •123.Классификация болезней человека.
- •124.Врожденные пороки развития. Тератогенез.
24.Геном человека. Строение генов.
Строение гена..Согласно современным представлениям, ген, кодирующий синтез определенного белка, у эукариот состоит из нескольких обязательных элементов. Прежде всего это обширная регуляторная зона, оказывающая сильное влияние на активность гена в той или иной ткани организма на определенной стадии его индивидуального развития. Далее расположен непосредственно примыкающий к кодирующим элементам гена промотор – последовательность ДНК длиной до 80-100 пар нуклеотидов, ответственная за связывание РНК-полимеразы, осуществляющей транскрипцию данного гена. Вслед за промотором лежит структурная часть гена, заключающая в себе информацию о первичной структуре соответствующего белка. Эта область для большинства генов эукариот существенно короче регуляторной зоны, однако ее длина может измеряться тысячами пар нуклеотидов.
Важная особенность эукариотических генов – их прерывность. Это значит, что область гена, кодирующая белок, состоит из нуклеотидных последовательностей двух типов. Одни – экзоны – это участки ДНК, которые несут информацию и строении белка и входят в состав соответствующих РНК и белка. Другие – интроны – не кодируют структуру белка и в состав зрелой молекулы и-РНК не входят, хотя и транскрибируются. Процесс вырезания интронов – «ненужных» участков молекулы РНК и сращивания экзонов при образовании и-РНК осуществляется специальными ферментами и получил название Сплайсинг (сшивание, сращивание). Экзоны обычно соединяются вместе в том же порядке, в котором они распологаются в ДНК. Однако не абсолютно все гены эукариот прерывисты. Иначе говоря, у некоторых генов, подобно бактериальным, наблюдается полное соответствие нуклеотидов последовательности первичной структуре кодируемых ими белков. Таким образом, ген эукариот во многом похож на оперон прокариот, хотя и отличается от него более сложной и протяженной регуляторной зоной, а также тем, что он кодирует обычно только один белок, а не несколько, как оперон у бактерии.
25.Структура и регуляция действия генов у про- и эукариот.
В клетках эукариот от ДНК исходят сигналы, которые в конечном счете передаются РНК-полимеразе: стимулируют или подавляют инициацию синтеза РНК. Источником сигналов служат определенные локусы ДНК — регуляторные элементы. Эти участки имеют небольшие размеры, порядка 10 н. п. Регуляторные элементы, стимулирующие транскрипцию, называют энхансерами (англ. enhancer — усилитель), а подавляющие транскрипцию — сайленсерами (англ. silencer — глушитель, успокоитель).
Регуляторные элементы могут избирательно соединяться с белками-регуляторами.
Белки, соединяющиеся с энхансерами, называют индукторами, а соединяющиеся с сайленсерами — репрессорами.Цис-элементы действуют на гены только той молекулы ДНК, в которой они сами находятся. Энхансеры и сайленсеры могут располагаться вблизи от промотора и от стартовой точки транскрипции регулируемого гена, но могут быть и удалены от него, даже на тысячи нуклеотидных пар, как в сторону 5'-конца, так и в сторону З'-конца. Однако они могут быть сближены в результате изгибания молекулы ДНК.
Белки-регуляторы (индукторы и репрессоры) содержат по крайней мере три домена:1) домен, узнающий определенную нуклеотидную последовательность ДНК; эти домены часто имеют супервторичную структуру типов а-спираль-пово-рот-а-спираль, лейциновая застежка-«молния», цинковый палец;
2) домен, узнающий трансэлементы;
3) домен, взаимодействующий с факторами транскрипции в области ТАТА-последовательности; в результате этого белки-регуляторы влияют на транскрипцию, а именно увеличивают (индукторы) или уменьшают (репрессоры) частоту инициации транскрипции.
Каждый ген регулируется независимо от других. Следовательно, для каждого гена существуют специфические регуляторные элементы (локусы ДНК) и специфические регуляторные белки, узнающие эти элементы. Уже известно много ре-гуляторных белков и регуляторных элементов разных генов, и постоянно обнаруживаются все новые и новые.
Присоединение регуляторных белков к энхансерам или сайленсерам зависит от других веществ — трансэлементов, сигнальных молекул, приносимых в клетку с кровью или образующихся в самой клетке. К числу таких молекул относятся гормоны, некоторые метаболиты, ионы металлов. Есть регуляторные белки, реагирующие на изменение температуры. Все эти сигналы стимулируют присоединение индукторов к соответствующим энхансерам или репрессоров к соответствующим сайленсерам. Трансэлементами их называют потому, что они могут действовать на любую молекулу ДНК (любую хромосому), если только в ней есть подходящий цис-элемент.
Чтобы разобраться в этой сложной системе и пока неустоявшейся терминологии, рассмотрим конкретный пример — регуляцию синтеза металлотионеина. Металлотионеин — небольшой белок, содержащий много остатков цистеина, примерно 1/ от всех аминокислот, и поэтому способный связывать ионы тяжелых металлов — Zn, Си, Cd, Hg, Ag. Одна молекула металлотионеина связывает несколько ионов. Эти ионы токсичны для организма, и при избыточной концентрации выводятся в комплексе с металлотионеином. Металлотионеин постоянно синтезируется в печени и секретируется в кровь, что важно для регуляции концентраций ионов Zn и Си, поскольку они являются нормальными и обязательными компонентами организма. Но при повышенном поступлении в организм ионов тяжелых металлов синтез металлотионеина стимулируется (положительная регуляция).
26.Функции генов. Уровни реализации генетической информации.
В процессе реализации наследственной информации, заключенной в гене, проявляется целый ряд его свойств. Определяя возможность развития отдельного качества, присущего данной клетке или организму, ген характеризуется дискретностью действия (от лат. discretus — разделенный, прерывистый), прерывностью (интроны и экзоны). Дискретность наследственного материала, предположение о которой высказал еще Г. Мендель, подразумевает делимость его на части, являющиеся элементарными единицами, - гены. В настоящее время ген рассматривают как единицу генетической функции. Он представляет собой минимальное количество наследственного материала, которое необходимо для синтеза тРНК, рРНК или полипептида с определенными свойствами. Ген несет ответственность за формирование и передачу по наследству отдельного признака или свойства клеток, организмов данного вида. Кроме того, изменение структуры гена, возникающее в разных его участках, в конечном итоге приводит к изменению соответствующего элементарного признака.
Ввиду того что в гене заключается информация об аминокислотной последовательности определенного полипептида, его действие является специфичным. Однако в некоторых случаях одна и та же нуклеотидная последовательность может детерминировать синтез не одного, а нескольких полипептидов. Это наблюдается в случае альтернативного сплайсинга у эукариот и при перекрывании генов у фагов и прокариот. Очевидно, такую способность следует оценить как множественное, или плейотропное, действие гена (хотя традиционно под плейотропным действием гена принято понимать участие его продукта – полипептида – в разных биохимических процессах, имеющих отношение к формированию различных сложных признаков).
Определяя возможность транскрибирования мРНК для синтеза конкретной полипептидной цепи, ген характеризуется дозированностью действия, т.е. количественной зависимостью результата его экспрессии от дозы соответствующего аллеля этого гена. Примером может служить зависимость степени нарушения транспортных свойств гемоглобина у человека при серповидно-клеточной анемии от дозы аллеля НЬS. Наличие в генотипе человека двойной дозы этого аллеля, приводящего к изменению структуры β-глобиновых цепей гемоглобина, сопровождается грубым нарушением формы эритроцитов и развитием клинически выраженной картины анемии вплоть до гибели. У носителей только одного аллеля НЬS при нормальном втором аллеле лишь незначительно изменяется форма эритроцитов и анемия не развивается, а организм характеризуется практически нормальной жизнеспособностью.