- •Министерство образования и науки российской федерации
- •Оглавление
- •Глава 1. Понятие информатики, системы счисления, кодирование информации
- •1.1. Предмет и задачи информатики, понятие информации
- •Понятие информации
- •1.2. Информационные процессы и технологии
- •1.2.1. Формы представления информации
- •1.2.2. Понятие количества информации
- •1.2.3. Единицы измерения информации
- •1.3. Системы счисления
- •1.3.1. Типы систем счисления
- •1.3.2. Двоичная система счисления
- •1.3.3. Шестнадцатеричная система счисления
- •1.3.4. Перевод чисел из одной системы счисления в другую
- •1.4. Основы булевой алгебры
- •1.5. Кодирование информации в компьютере
- •1.5.1. Понятие кодирования
- •1.5.2. Кодирование числовой информации
- •1.5.3. Представление вещественных чисел
- •1.5.4. Кодирование текстовой информации
- •Универсальный код - Unicode
- •1.5.5. Кодирование графической информации
- •Растровая графика
- •Векторная графика
- •Фрактальная графика
- •1.5.6. Кодирование звука
- •1.5.7. Кодирование команд
- •1.5.8. Коды, исправляющие ошибки
- •1.6. Тесты
- •Глава 2. Основы организация и функционирования компьютеров
- •2.1. Классификация компьютеров
- •Краткая история развития компьютеров
- •2.2. Принципы построения персонального компьютера
- •2.3. Базовая конфигурация пк
- •2.3.1 Системный блок
- •2.3.2. Системная плата
- •2.3.3. Центральное процессорное устройство
- •2.3.4. Шинные интерфейсы и порты системной платы
- •2.3.5. Базовая система ввода-вывода
- •2.3.6. Энергонезависимая память
- •2.4. Система памяти компьютера
- •2.4.2. Оперативная память
- •2.4.3. Накопители на жестких магнитных дисках
- •2.4.4. Накопители на оптических дисках
- •2.5. Периферийные устройства
- •2.5.1. Монитор
- •2.5.2. Видеоплата
- •2.5.3. Звуковая карта
- •2.5.4. Клавиатура
- •2.5.5. Манипулятор «мышь»
- •2.5.6. Принтеры
- •2.5.7. Сканеры
- •2.5.8. Графи́ческий планшет
- •2.5.9. Плоттер
- •2.5.10. Стриммер
- •2.5.11. Флэш-память
- •2.5.12. Модем
- •2.11. Внешний и внутренний модемы
- •2.5.13. Сетевая плата
- •2.5.14. Тюнер
- •2.6. Тесты
- •Глава 3. Программное обеспечение компьютеров
- •3.1. Понятие и классификация программного обеспечения
- •3.2. Назначение и функции операционных систем пк
- •3.3. Основные операционные системы
- •3.4. Файловая система
- •3.5. Операционная система WindowsXp
- •3.6. Операционная система WindowsVista
- •3.7. Прикладные программы
- •3.8. Инструментальные программные системы
- •3.9. Тесты
- •Глава 4. Электронные таблицы Excel
- •4.1. Назначение электронных таблиц
- •4.2. Интерфейс пользователя в Excel
- •4.3. Основы работы в Excel
- •4.3.1. Ввод данных в ячейки электронной таблицы
- •4.3.2. Выравнивание содержимого ячеек
- •4.3.3. Формулы и функции
- •Примеры вычислений с использованием стандартных функций
- •4.3.4. Копирование данных, адресация ячеек
- •4.4. Построение диаграмм и графиков в Excel
- •4.5. Обработка табличных данных в Excel
- •4.5.1. Группировка данных
- •4.5.2. Сортировка и фильтрация данных
- •4.6. Объединение электронных таблиц
- •4.7. Анализ данных с помощью сводных таблиц
- •4.8. Решение типовых задач средствами Excel
- •4.8.1.Подбор параметров
- •4.8.2.Анализ и прогнозирование данных
- •4.8.3. Использование логических функций в Excel
- •Функция Комментарий результата
- •4.8.4. Вычисление функций и построение графиков
- •Вычисление функций одной переменной
- •Вычисление функций двух переменных
- •4.8.5. Решение нелинейного уравнения
- •4.8.6. Решение системы уравнений
- •4.8.7. Численное интегрирование функций
- •4.8.8. Решение дифференциальных уравнений
- •4.8.9. Финансовые вычисления в Excel
- •Расчет амортизационных отчислений
- •Расчет процентных платежей
- •Расчет стоимости инвестиции
- •Расчет продолжительности платежей
- •4.9. Тесты
- •Глава 5. Компьютерные сети, Интернет
- •5.1. Назначение и классификация компьютерных сетей
- •5.1.1. Классификация сетей
- •5.1.2. Сетевые топологии
- •5.2. Модель взаимодействия в компьютерной сети
- •5.3. Среда передачи и сетевое оборудование
- •5.3.1. Сетевое оборудование
- •5.3.2 Стандартные сетевые протоколы
- •5.4. Основы Интернет
- •5.4.1. Клиенты и серверы
- •5.4.2. Передача информации в Интернете
- •5.4.3. Протоколы Интернета
- •5.4.4. Адресация в Интернете
- •5.4.5. Система доменов Интернет
- •5.4.6. Способы подключения к сети Интернет
- •5.4.7. Постоянное подключение
- •5.5. Информационные ресурсы Интернет
- •5.5.1 Программное обеспечение для работы в Интернет
- •5.5.2. Гипертекстовая система www
- •5.6. Средства коммуникации в Интернет
- •5.6.1. Электронная почта
- •5.6.2. Антиспам
- •5.6.3. Телеконференции Usenet
- •5.6.4. Служба передачи файлов ftp
- •5.6.5. Форум
- •5.6.7. Тематическиe сайты
- •5.6.8. Порталы
- •5.6.9. Блоги
- •5.6.10. Социальные сети
- •5.6.11. Интернет-пейджеры
- •5.6.13. Интернет-магазины
- •5.6.14. Дистанционное обучение
- •5.6.15. Интернет-переводчики
- •5.6.16 Поиск информации в Интернет
- •5.7. Защита информации в сетях
- •5.7.1.Компьютерные вирусы
- •5.7.2.Антивирусная защита
- •5.7.3.Межсетевые экраны
- •5.7.4.Криптографические средства
- •5.8. Тесты
- •Ответы на тесты главы 5
- •Глава 6. Основы информационных систем и баз данных
- •6.1. Понятие информационных систем и баз данных
- •6.2. Модели баз данных
- •6.2.1.Иерархическая модель данных
- •6.2.2. Сетевая модель
- •6.2.3.Реляционная модель данных
- •6.3. Основы проектирования информационных систем
- •6.3.1. Нормализация бд
- •6.4. Субд Microsoft Access
- •6.4.1.Краткая характеристика Access
- •6.4.2. Структура и объекты базы данных
- •6.4.3. Создание таблиц
- •6.4.4. Создание запросов
- •6.4.5. Создание форм для ввода данных
- •6.4.6. Создание и печать отчетов
- •6.4.7. Основные этапы разработки базы данных
- •6.5.Тесты
- •7.1. Основные понятия программирования
- •7.1.1. Понятие алгоритма
- •7.1.2. Программа. Языки программирования
- •7.1.3. Этапы работы над программой. Система программирования
- •7.2. Предварительные сведения о языке Паскаль и системе программирования
- •7.2.1. Запуск системы Турбо Паскаль
- •7.2.2. Алфавит языка Паскаль
- •7.2.3. Структура программы на языке Паскаль
- •7.3. Начинаем программировать на Паскале
- •7.3.1. Первая программа на Паскале
- •7.3.2. Цветовое оформление результатов
- •7.3.3. Программы линейной структуры
- •7.3.4. Использование вещественных чисел
- •7.4. Использование возможностей интегрированной среды программирования
- •7.4.1. Редактирование текста редактором системы Турбо Паскаль
- •7.4.2. Работа со справочной системой
- •7.4.3. Работа с окнами
- •7.5. Условные операторы и оператор безусловного перехода
- •7.5.1. Оператор If
- •7.5.2. Логические переменные. Логические операции
- •7.5.3. Оператор Case
- •7.5.4. Безусловный оператор перехода Goto
- •7.6. Операторы цикла
- •7.6.1. Оператор For
- •7.6.2. Оператор Repeat … until
- •7.6.3. Оператор While
- •7.7. Работа с символами и строками
- •7.7.1. Символьные константы и переменные
- •7.7.2. Строковые переменные
- •7.8. Массивы
- •7.8.1. Одномерные массивы
- •7.8.2. Двумерные массивы.
- •7.9. Функции и процедуры.
- •7.9.1. Функции
- •7.9.2. Процедуры
- •7.10. Работа с файлами
- •7.10.1. Текстовые файлы
- •7.11. Тесты
- •Глава 8. Компьютерное обеспечение презентаций
- •8.1. Средства обеспечения компьютерной презентации
- •8.1.2. Программные средства
- •8.2.1. Создание новой презентации с помощью Мастера автосодержания
- •8.2.2. Создание презентации с помощью пустых слайдов
- •8.2.3. Создание презентации на основе существующей
- •8.2.4. Создание презентации с помощью шаблонов оформления
- •8.2.5. Использование книжной и альбомной ориентации в одной и той же презентации
- •8.2.6. Отображение областей задач и перемещение между ними
- •8.3. Режимы Microsoft PowerPoint
- •8.3.1. Обычный режим
- •8.3.2. Режим сортировщика слайдов
- •8.3.3. Режим просмотра слайдов
- •8.3.4. Выбор режима по умолчанию
- •8.3.5. Добавление нового слайда
- •8.3.6. Дублирование слайдов в пределах Презентации
- •8.3.7. Изменение порядка слайдов
- •8.3.8. Скрытие слайда
- •8.3.9. Отображение скрытых слайдов
- •8.3.10. Создание слайда, содержащего заголовки других слайдов
- •8.4. Сохранение форматирования слайда при копировании
- •8.4.1. Копирование и вставка слайдов
- •8.4.2. Копирование и вставка таблиц и фигур
- •8.4.3. Копирование и вставка текста
- •8.4.4. Копирование слайдов с помощью средства поиска слайдов
- •8.5. Отправка слайдов в Microsoft Word
- •8.5.1. Разрешение вопросов при копировании и вставке
- •8.6. Работа с текстом. Общие сведения о добавлении текста на слайд
- •8.6.1. Рамки
- •8.6.2. Автофигуры
- •8.6.3. Надписи
- •8.6.4. Текст WordArt
- •8.7. Вставка текста в презентацию
- •8.7.1 Вставка текста в формате Microsoft Word или rtf
- •8.7.2. Вставка текста в формате html
- •8.7.3. Вставка обычного текста
- •8.7.4. Автоподбор параметров текста
- •8.7.5. Текст в области «Структура»
- •8.7.6. Работа средств проверки стиля в презентации
- •8.7.7. Что входит в проверку стиля?
- •8.7.8. Оформление презентации
- •8.8 Тесты
- •Литература
- •Пестриков Виктор Михайлович
1.2.1. Формы представления информации
Различают две формы представления информации - непрерывную (аналоговую) и дискретную (цифровую). Поскольку носителями информации являются сигналы, то в качестве них могут использоваться физические процессы различной природы. Например, процесс протекания электрического тока в цепи, процесс распространения света и т.п. Информация представляется значением одного или нескольких параметров физического процесса (сигнала), либо комбинацией нескольких параметров. Человек, например, через свои органы чувств привык к аналоговой информации, компьютер работает с цифровой информацией. Основная разница между аналоговой и цифровой информацией – это непрерывность и дискретность. Например, музыка при её восприятии является аналоговой информацией, но когда она записана нотами, то это цифровая информация. На формальном математическом примере это можно представить так. Пусть есть функция Y =X2, являющаяся непрерывной функцией, так как для любого значения Χ однозначно определено значение Υ. Когда мы эту функцию представляем в дискретной форме с выбранным шагом дискретизации аргумента Х, то мы выбираем ограниченный набор значений аргумента Χ:
Х |
1 |
2 |
3 |
4 |
5 |
6 |
Y=X2 |
1 |
4 |
9 |
16 |
25 |
36 |
Погрешность, возникающая при дискретном представлении функции, называется погрешностью оцифровки аналого-цифрового преобразования, которое можно сделать точнее, если для значений аргумента Х уменьшить интервалы, то есть шаг дискретности. Таким образом, чем меньше дискретность, тем меньше погрешность и точнее представление информации.
Сигнал называется непрерывным, если его параметр в заданных пределах может принимать любые промежуточные значения. Дискретным называется сигнал, принимающий ограниченное число значений. В цифровой технике приходится иметь дело с сигналами, принимающими только два значения: есть импульс - нет импульса, высокий уровень потенциала - низкий уровень. Этим значениям сигнала приписывают два математических символа “1” и “0”, поэтому дискретные сигналы называют цифровыми. Информация, отображаемая с помощью дискретных (цифровых) сигналов, получила название дискретной (цифровой) информации.
По способу передачи и восприятия различают такие виды информации как: визуальную – передаваемую видимыми образами и символами, аудиальную – звуками, тактильную – ощущениями, машинную – выдаваемую и воспринимаемую средствами вычислительной техники и т. п.
1.2.2. Понятие количества информации
Как измерять количество информации, полученной в результате прочтения книги, просмотра картины, фильма и т.п. В научном плане информация связывается с вероятностью выполнения того или иного события. Количеством информации называют числовую характеристику сигнала, отражающую ту степень неопределенности, которая исчезает после получения сообщения в виде определенного сигнала. Эту меру неопределенности в теории информации называют энтропией. Если в результате получения сообщения достигается полная ясность в каком-то вопросе, то говорят, что была получена полная или исчерпывающая информация и необходимости в получении дополнительной информации нет. И, наоборот, если неопределенность осталась прежней после получения сообщения, то это означает, что информация не получена (нулевая информация).
Приведенные рассуждения показывают, что между понятиями информация, неопределенность и возможность выбора существует тесная связь. Так, любая неопределенность предполагает возможность выбора, а любая информация, уменьшая неопределенность, уменьшает и возможность выбора. Частичная информация уменьшает число вариантов выбора, сокращая тем самым неопределенность. Например, человек бросает монету и наблюдает, какой стороной она упадет, одинаково вероятно, что выпадет одна или другая сторона. Такой ситуации приписывается начальная неопределенность, характеризуемая двумя возможностями. После того, как монета упадет, достигается полная однозначность и неопределенность исчезает (становится равной нулю).
Приведенный пример относится к группе событий, применительно к которым может быть поставлен вопрос типа «правда-ложь, да-нет». Количество информации, которое можно получить при ответе на вопрос типа «да-нет», называется битом ( Bit — сокращение от binary digit — двоичная единица). Бит- минимальная единица количества информации, так как получить информацию меньшую, чем 1 бит, невозможно.
В качестве других моделей получения такого же количества информации могут выступать устройства с двумя состояниями, например, двухпозиционный выключатель, триггер и другие. Включенное состояние этих объектов обычно обозначают (кодируют) цифрой 1, а выключенное - цифрой 0. Рассмотрим схему из двух выключателей, которые независимо могут быть включены или выключены и для такой схемы возможны следующие состояния:
Выключатель 1 |
0 |
0 |
0 |
1 |
Выключатель 2 |
0 |
1 |
1 |
1 |
Чтобы получить полную информацию о состоянии такой схемы, необходимо задать вопросы типа «да»-«нет» для выключателей 1 и 2 соответственно. В этом случае количество информации, содержащейся в данной схеме, определяется уже 2 битами, а число возможных состояний схемы – 4. Если взять три выключателя, то количество состояний такой схемы будет равно 8 и т. д. Посредством n двоичных цифр (разрядов) можно закодировать Р значений (комбинаций): Р=2n, например с помощью байта можно закодировать 256 комбинаций кодов : 28 = 256.
Связь между количеством информации и числом состояний системы устанавливается формулой Хартли: I = log2N, где I – количество информации в битах; N -. число возможных равновероятных событий.
Информация передается посредством канала связи между приемником и источником, основными характеристиками которого являются следующие:
пропускная способность – количество информации, передаваемой в единицу времени, измеряется в бит/с. и называется бодом: 1бод = 1бит/с. (Э. Бодо сконструировал в 1872 году телеграфный аппарат на основе пятизначного кода, что позволило передавать телеграммы со скоростью 360 знаков в минуту);
скорость передачи информации, измеряемая количеством бит/сек или байт/сек;
надежность передачи информации.