
- •Физиология растений теория
- •1. Предмет и объект физиологии растений. Разнообразие объектов, характеризующихся фототропным образом жизни. Проблемы и задачи современной физиологии растений.
- •2. Этапы развития физиологии растений, ее связь с общим развитием биологии и практикой.
- •3. Структура компонентов растительной клетки, особенности строения в связи с их биологической функцией. Клеточная стенка.
- •4. Структура компонентов растительной клетки, особенности строения в связи с их биологической функцией. Цитоплазма, микротрубочки, микрофиламенты.
- •5. Структура компонентов растительной клетки, особенности строения в связи с их биологической функцией. Ядро, рибосомы.
- •6. Структура компонентов растительной клетки, особенности строения в связи с их биологической функцией. Пластиды, митохондрии.
- •7. Структура компонентов растительной клетки, особенности строения в связи с их биологической функцией. Вакуоль, пероксисомы, лизосомы.
- •8. Структура компонентов растительной клетки, особенности строения в связи с их биологической функцией. Эндоплазматический ретикулум. Аппарат Гольджи.
- •9. Функциональное взаимодействие различных органоидов клетки.
- •10. Физико-химические свойства цитоплазмы, ее взаимодействие с внешней средой.
- •11. Структура и функция мембран растительной клетки. Проницаемость мембран.
- •12. Принципы регулирования физиологических процессов клеткой.
- •13. Физико-химическая сущность фотосинтеза и его роль в процессах энергетического и пластического обмена растительного организма. Общие закономерности и значение фотосинтеза.
- •14. Структурная организация фотосинтетического аппарата. Лист как орган фотосинтеза.
- •15. Хлоропласты, их строение, биохимический состав и функции. Биогенез хлоропластов.
- •16. Пигментные системы фотосинтезирующих организмов.
- •17. Хлорофиллы, их строение, химические и физические свойства. Функции хлорофиллов.
- •18. Биосинтез хлорофилла.
- •19. Каротиноиды, их строение, классификация, свойства и функции.
- •20. Билихромопротеины (фикобилины), их структура, свойства и функции.
- •21. Поглощение света пигментами. Законы поглощения света.
- •22. Электронно-возбужденные состояние пигментов и типы дезактивации возбужденных состояний.
- •23. Флуоресценция.
- •24. Фосфоресценция.
- •25. Миграция энергии в системе фотосинтетических пигментов. Понятие о фотосинтетической единице и реакционных центрах.
- •26. Представление о функционировании двух фотосистем, их структура и назначение.
- •27. Структура электрон-транспортной цепи фотосинтеза.
- •28. Фотофосфорилирование, его типы, характеристика.
- •29. Классификация растений по метаболизму со2 в фотосинтезе.
- •30. Метаболизм углерода в процессе фотосинтеза. С3-путь фотосинтеза, основные этапы, их характеристика.
- •31. Природа первичного акцептора углекислоты.
- •33. Метаболизм углерода по типу толстянковых (сам-цикл).
- •34. Фотодыхание и метаболизм гликолевой кислоты (с2 -путь).
- •35. Показатели фотосинтеза: интенсивность, фотосинтетический потенциал, индекс листовой поверхности.
- •36. Фотосинтез и урожай.
- •37. Зависимость фотосинтеза от факторов внешней среды.
- •38. Эндогенная регуляция фотосинтеза.
- •39. Значение дыхания в жизни растений. Теория в.И. Палладина.
- •40. Показатели дыхания: интенсивность и дыхательный коэффициент.
- •41. Ферментные системы дыхания. Участие ферментов различных классов в дыхании.
- •42. Дыхательные субстраты. Пути диссимиляции углеводов.
- •43. Гликолиз, его суть, энергетика.
- •44. Цикл ди- и трикарбоновых кислот, его суть, энергетика.
- •47. Использование в качестве дыхательных субстратов жиров и белков. Взаимосвязь превращения углеводов, белков и жиров.
- •48. Митохондрии, их структура и функции.
- •49. Электрон-транспортная цепь дыхания, характеристика ее компонентов.
- •50. Окислительное фосфорилирование в электрон-транспортной цепи, энергетическая эффективность.
- •51. Субстратное и окислительное фосфорилирование.
- •52. Особенности дыхания у растений.
- •53. Зависимость дыхания от внутренних факторов.
- •54. Зависимость дыхания от внешних факторов.
- •55. Структура, свойства воды и ее роль в жизнедеятельности растений.
- •56. Термодинамические основы водообмена растений: активность воды, химический потенциал воды, водный потенциал, матричный потенциал, осмотический потенциал, гидростатический (потенциал давления).
- •57. Поступление воды в растение. Водный баланс растений.
- •58. Градиент водного потенциала - движущая сила поступления и передвижения воды в клетках, тканях и растении.
- •59. Механизмы поступления воды в растительную клетку.
- •60. Корневая система как орган поглощения воды.
- •61. Корневое давление, его значение и зависимость от действия внешних факторов.
- •62. Гуттация, ее суть и значение. ”Плач“ растений.
- •63. Транспирация как физиологический процесс. Биологическое значение транспирации. Типы транспирации.
- •64. Устьичная транспирация и физиология устьичных движений.
- •65. Внеустьичная транспирация.
- •66. Показатели траспирации: интенсивность, транспирационный коэффициент, коэффициент водопотребления.
- •67. Влияние на транспирацию внешних факторов.
- •68. Саморегулирование транспирации.
- •69. Движущие силы восходящего тока воды. Нижний и верхний концевой двигатели, процессы когезии и адгезии.
- •70. Механизмы регуляции устьичной транспирации.
- •71. Механизмы регуляции внеустьичной транспирации.
- •72. Элементы минерального питания, необходимые для жизнедеятельности растений. Понятие о макро- и микроэлементах.
- •73. Роль и функциональные нарушения при недостатке в растении азота и фосфора.
- •74. Роль и функциональные нарушения при недостатке в растении калия и кальция.
- •75. Роль и функциональные нарушения при недостатке в растении серы и магния.
- •76. Роль и функциональные нарушения при недостатке в растении железа, меди, марганца.
- •77. Роль и функциональные нарушения при недостатке в растении цинка, молибдена, бор.
- •78. Структурная и каталитическая функция ионов в метаболизме.
- •79. Взаимодействие ионов: антагонизм, синергизм, аддитивность.
- •80. Поступление минеральных веществ. Транспорт ионов через плазматическую мембрану. Значение мембранного потенциала для процессов поступления ионов в клетку.
- •81. Пассивный и активный транспорт.
- •82. Ионные каналы.
- •83. Участие переносчиков и транспортных атФаз.
- •84. Радиальное перемещение ионов в корне: симпластический и апопластический пути.
- •85. Функции корневых тканей в радиальном транспорте.
- •86. Дальний транспорт ионов в растении. Восходящий и нисходящий ток минеральных элементов и веществ в растении.
- •87. Пространственная организация ионного транспорта в корне.
- •88. Интеграция и регуляция транспорта в целом растении.
- •89. Минеральное питание как фактор повышения продуктивности сельскохозяйственный растений.
- •90. Общие закономерности роста и развития растений. Кривая роста. Определение понятий ”онтогенез“, ”рост“ и ”развитие“.
- •91. Периодизация онтогенеза.
- •92. Показатели роста растений.
- •93. Клеточные основы роста и развития.
- •94. Локализация роста у растений. Ростовые корреляции. Полярность. Тотипотентность.
- •95. Зависимость роста от экологических факторов (свет, температура, водообеспеченность, минеральное питание).
- •96. Явление покоя, его адаптивная функция. Типы покоя и факторы его обусловливающие.
- •97. Фитогормоны как факторы, регулирующие рост и развитие растений. Локализация биосинтеза фитогормонов в растении и их транспорт.
- •98. Ауксины
- •99. Гиббереллины
- •100. Цитокинины
- •101. Абсцизовая кислота
- •102. Этилен.
- •103. Брассиностероиды
- •104. Жасминовая и салициловая кислоты
- •105. Системин и др.
- •106. Синтетические регуляторы роста, их природа и использование: гербициды, ретарданты, регуляторы созревания и покоя, дефолианты.
- •107. Движение растений. Ростовые и тургорные движения растений.
- •108. Тропизмы, виды тропизмов.
- •109. Настии, их типы.
- •110. Развитие растений, основные этапы. Жизненный цикл растений.
- •111. Термопериодизм. Фотопериодизм. Регуляция фотопериодических реакций фитохромом.
- •112. Стресс, адаптация, устойчивость. Общие понятия. Триада Селье.
- •113. Критические периоды воздействия стрессовых факторов на растения.
- •114. Стресс-белки.
- •115. Действие низких положительных температур и холодоустойчивость растений. Приспособление растений к низким положительным температурам. Способы повышения холодостойкости растений.
- •116. Действие отрицательных температур и морозоустойчивость растений. Причины вымерзания растений. Физиолого-биохимическая природа устойчивости растений к отрицательным температурам.
- •117. Действие высоких температур и жароустойчивость растений. Изменение обмена веществ, роста и развития растений.
- •118. Водный дефицит и засухоустойчивость растений. Совместное действие на растение недостатка влаги и высокой температуры.
- •119. Особенности устойчивости у мезофитов и ксерофитов.
- •120. Растения в условиях гипоксии и аноксии. Анатомо-морфологические приспособления и активирование анаэробного метаболизма в условиях недостатка кислорода. Акклимация растений к аноксии.
- •121. Солевой стресс. Виды засоления. Группы растений по устойчивости к засолению.
- •122. Газоустойчивость растений. Формы устойчивости.
- •123. Физиолого-биохимические основы устойчивости растений к фитопатогенам.
72. Элементы минерального питания, необходимые для жизнедеятельности растений. Понятие о макро- и микроэлементах.
Ответ. В зеленых насаждениях обнаружены многие химические элементы. Макроэлементы содержатся в значительных концентрациях, микроэлементы – в тысячных долях процента. Макроэлементы представляют особую важность для роста и развития растений на всех стадиях жизненного цикла. К ним относят те, которые содержатся в культурах в значительных количествах - это азот, фосфор, калий, сера, магний и железо. При их дефиците представители флоры плохо развиваются, что сказывается на урожайности. Признаки нехватки многократно используемых макроэлементов проявляются прежде всего на старых листьях. Азот. Главный ответственный за питание корней элемент. Он участвует в реакциях фотосинтеза, регулирует обмен веществ в клетках, а также способствует росту новых побегов. Этот элемент особенно необходим для растений на стадии вегетации. При нехватке азота рост насаждений замедляется или останавливается вовсе, цвет листьев и стеблей становится бледнее. Из-за переизбытка азота позднее развиваются соцветия и плоды. Насаждения, которых перекормили азотом имеют ботву темно-зеленого цвета, и излишне толстые стебли. Период вегетации удлиняется. Слишком сильное перенасыщение азотом приводит к гибели флоры в течение нескольких дней. Фосфор. Участвует в большинстве протекающих в растениях процессах. Обеспечивает нормальное развитие и функционирование корневой системы, образование крупных соцветий, способствует вызреванию плодов. Нехватка фосфора негативно сказывается на цветении и процессе созревания. Цветки получаются мелкими, плоды часто с дефектами. Литья могут окрашиваться в красновато-коричневый оттенок. Если же фосфор в избытке, замедляется обмен веществ в клетках, растения становятся чувствительными к нехватке воды, они хуже усваивают такие питательные элементы, как железо, цинк и калий. В результате листья желтеют, опадают, срок жизни растения сокращается. Процент калия в растениях больше по сравнению с кальцием и магнием. Этот элемент задействован в синтезировании крахмала, жиров, белков и сахарозы. Он защищает от обезвоживания, укрепляет ткани, предупреждает преждевременное увядания цветков, повышает сопротивляемость культур к различного рода патогенам. Растения, обедненные калием, можно узнать по отмершим краям листьев, коричневым пятнам и куполообразной их форме. Это происходит вследствие нарушения процессов производства, накопления в зеленых частях насаждений продуктов распада, аминокислот и глюкозы. Если калий в избытке, наблюдается замедление всасывания растением азота. Это приводит к остановке роста, деформациям листьев, хлорозу, а на запущенных стадиях к отмиранию листьев. Поступление магния и кальция также затрудняется. Магний. Участвует в реакциях с образованием хлорофилла. Является одним из его составных элементов. Способствует синтезу фитинов, содержащихся в семенах и пектинов. Магний активизирует работу энзимов, при участии которых происходит образование углеводов, протеинов, жиров, органических кислот. Он участвует в транспорте питательных веществ, способствует более скорому вызреванию плодов, улучшению их качественных и количественных характеристик, повышению качества семян. Если растения испытывают дефицит магния, их листья желтеют, так как молекулы хлорофилла разрушаются. Если недостаток магния своевременно не восполнить, растение начнет отмирать. Избыток магния у растений наблюдаются редко. Однако, если доза внесенных препаратов магния слишком большая, замедляется всасываемость кальция и калия. Сера. Является составным элементов протеинов, витаминов, аминокислот цистина и метионина. Участвует в процессах образования хлорофилла. Растения, которые испытывают серное голодание, нередко заболевают хлорозом. Болезнь поражает главным образом молодые листья. Избыток серы приводит к пожелтению краев листьев, их подворачиванию вовнутрь. Впоследствии края обретают коричневый оттенок и отмирают. В некоторых случаях возможно окрашивание листьев в сиреневый оттенок. Железо. Является составным компонентом хлоропластов, участвует в производстве хлорофилла, обмене азота и серы, клеточном дыхании. Железо – необходимый компонент многих растительных ферментов. Этот тяжелый металл играет наиболее важную роль. Его содержание в растении достигает сотых долей процента. Неорганические соединения железа ускоряют биохимические реакции. При дефиците этого элемента растения нередко заболевают хлорозом. Нарушаются дыхательные функции, ослабляются реакции фотосинтеза. Верхушечные листья постепенно бледнеют и усыхают. Основными микроэлементами являются: железо, марганец, бор, натрий, цинк, медь, молибден, хлор, никель, кремний. Их роль в жизни растений нельзя недооценивать. Недостаток микроэлементов хоть и не приводит к гибели растений, но сказывается на скорости протекания различных процессов. Это влияет на качество бутонов, плодов и урожаях в целом. Кальций. Регулирует усвоение белков и углеводов, влияет на продуцирование хлоропластов и усвоению азота. Он играет важную роль в построении сильных клеточных оболочек. Наибольшее содержание кальция наблюдается в зрелых частях растений. Старые листья состоят из кальция на 1 %. Кальций активирует работу многих энзимов, в том числе амилазы, фосфорилазы, дегидрогеназы и др. Он регулирует работу сигнальных систем растений, отвечая за нормальные реакции на воздействия гормонами и внешними раздражителями. При нехватке этого химического элемента происходит ослизнение клеток растений. Особенно это проявляется на корнях. Нехватка кальцием приводит к нарушению транспортной функции мембран клеток, повреждению хромосом, нарушению цикла деления клеток. Перенасыщение кальцием провоцирует хлороз. На листьях появляются бледные пятна с признаками некроза. В некоторых случаях можно наблюдать круги, заполненные водой. Отдельные растения реагируют на переизбыток данного элемента ускоренным ростом, но появившиеся побеги быстро отмирают. Признаки отравления кальцием схожи с переизбытком железа и магния. Марганец. Активизирует работу ферментов, участвует в синтезировании протеинов, углеводов, витаминов. Марганец также принимает участие в фотосинтезе, дыхании, углеводно-белковом обмене. Недостаток марганца приводит к высветлению окраски листьев, появлению отмерших участков. Растения заболеванию хлорозом, у них отмечается недоразвитие корневой системы. В серьезных случаях начинают засыхать и опадать листья, отмирать верхушки веток. Цинк. Регулирует окислительно-восстановительные процессы. Является компонентом некоторых важных ферментов. Цинк повышает выработку сахарозы и крахмала, содержание в плодах углеводов и белков. Он участвует в реакции фотосинтеза и способствует выработке витаминов. При нехватке цинка растения хуже противостоят холоду и засухе, уменьшается содержание в них белка. Цинковое голодание также приводит к изменению окраски листьев (они желтеют или обретают белесый цвет), уменьшению образования почек, падению урожайности. Молибден. На сегодняшний день именно этот микроэлемент называют одним из важнейших. Молибден регулирует азотный обмен, нейтрализует нитраты. Он также влияет на углеводородный и фосфорный обмен, производство витаминов и хлорофилла, а также на скорость протекания окислительно-восстановительных процессов. Молибден способствует обогащению растений витамином С, углеводами, каротином, белками. Недостаточные концентрации молибдена негативно сказываются на обменных процессах, затормаживается редуцирование нитратов, образование белков и аминокислот. В связи с этим урожаи снижаются, их качество ухудшается. Медь. Является элементом медьсодержащих белков, энзимов, участвует в фотосинтезе, регулирует транспорт белков. Медь повышает содержание азота и фосфора в два раза, а также защищает хлорофилл от разрушения. Дефицит меди приводит к скручиванию кончиков листьев и хлорозу. Снижается количество пыльцевых зерен, падает урожайность, у деревьев “повисает” крона.