- •Физиология растений теория
- •1. Предмет и объект физиологии растений. Разнообразие объектов, характеризующихся фототропным образом жизни. Проблемы и задачи современной физиологии растений.
- •2. Этапы развития физиологии растений, ее связь с общим развитием биологии и практикой.
- •3. Структура компонентов растительной клетки, особенности строения в связи с их биологической функцией. Клеточная стенка.
- •4. Структура компонентов растительной клетки, особенности строения в связи с их биологической функцией. Цитоплазма, микротрубочки, микрофиламенты.
- •5. Структура компонентов растительной клетки, особенности строения в связи с их биологической функцией. Ядро, рибосомы.
- •6. Структура компонентов растительной клетки, особенности строения в связи с их биологической функцией. Пластиды, митохондрии.
- •7. Структура компонентов растительной клетки, особенности строения в связи с их биологической функцией. Вакуоль, пероксисомы, лизосомы.
- •8. Структура компонентов растительной клетки, особенности строения в связи с их биологической функцией. Эндоплазматический ретикулум. Аппарат Гольджи.
- •9. Функциональное взаимодействие различных органоидов клетки.
- •10. Физико-химические свойства цитоплазмы, ее взаимодействие с внешней средой.
- •11. Структура и функция мембран растительной клетки. Проницаемость мембран.
- •12. Принципы регулирования физиологических процессов клеткой.
- •13. Физико-химическая сущность фотосинтеза и его роль в процессах энергетического и пластического обмена растительного организма. Общие закономерности и значение фотосинтеза.
- •14. Структурная организация фотосинтетического аппарата. Лист как орган фотосинтеза.
- •15. Хлоропласты, их строение, биохимический состав и функции. Биогенез хлоропластов.
- •16. Пигментные системы фотосинтезирующих организмов.
- •17. Хлорофиллы, их строение, химические и физические свойства. Функции хлорофиллов.
- •18. Биосинтез хлорофилла.
- •19. Каротиноиды, их строение, классификация, свойства и функции.
- •20. Билихромопротеины (фикобилины), их структура, свойства и функции.
- •21. Поглощение света пигментами. Законы поглощения света.
- •22. Электронно-возбужденные состояние пигментов и типы дезактивации возбужденных состояний.
- •23. Флуоресценция.
- •24. Фосфоресценция.
- •25. Миграция энергии в системе фотосинтетических пигментов. Понятие о фотосинтетической единице и реакционных центрах.
- •26. Представление о функционировании двух фотосистем, их структура и назначение.
- •27. Структура электрон-транспортной цепи фотосинтеза.
- •28. Фотофосфорилирование, его типы, характеристика.
- •29. Классификация растений по метаболизму со2 в фотосинтезе.
- •30. Метаболизм углерода в процессе фотосинтеза. С3-путь фотосинтеза, основные этапы, их характеристика.
- •31. Природа первичного акцептора углекислоты.
- •33. Метаболизм углерода по типу толстянковых (сам-цикл).
- •34. Фотодыхание и метаболизм гликолевой кислоты (с2 -путь).
- •35. Показатели фотосинтеза: интенсивность, фотосинтетический потенциал, индекс листовой поверхности.
- •36. Фотосинтез и урожай.
- •37. Зависимость фотосинтеза от факторов внешней среды.
- •38. Эндогенная регуляция фотосинтеза.
- •39. Значение дыхания в жизни растений. Теория в.И. Палладина.
- •40. Показатели дыхания: интенсивность и дыхательный коэффициент.
- •41. Ферментные системы дыхания. Участие ферментов различных классов в дыхании.
- •42. Дыхательные субстраты. Пути диссимиляции углеводов.
- •43. Гликолиз, его суть, энергетика.
- •44. Цикл ди- и трикарбоновых кислот, его суть, энергетика.
- •47. Использование в качестве дыхательных субстратов жиров и белков. Взаимосвязь превращения углеводов, белков и жиров.
- •48. Митохондрии, их структура и функции.
- •49. Электрон-транспортная цепь дыхания, характеристика ее компонентов.
- •50. Окислительное фосфорилирование в электрон-транспортной цепи, энергетическая эффективность.
- •51. Субстратное и окислительное фосфорилирование.
- •52. Особенности дыхания у растений.
- •53. Зависимость дыхания от внутренних факторов.
- •54. Зависимость дыхания от внешних факторов.
- •55. Структура, свойства воды и ее роль в жизнедеятельности растений.
- •56. Термодинамические основы водообмена растений: активность воды, химический потенциал воды, водный потенциал, матричный потенциал, осмотический потенциал, гидростатический (потенциал давления).
- •57. Поступление воды в растение. Водный баланс растений.
- •58. Градиент водного потенциала - движущая сила поступления и передвижения воды в клетках, тканях и растении.
- •59. Механизмы поступления воды в растительную клетку.
- •60. Корневая система как орган поглощения воды.
- •61. Корневое давление, его значение и зависимость от действия внешних факторов.
- •62. Гуттация, ее суть и значение. ”Плач“ растений.
- •63. Транспирация как физиологический процесс. Биологическое значение транспирации. Типы транспирации.
- •64. Устьичная транспирация и физиология устьичных движений.
- •65. Внеустьичная транспирация.
- •66. Показатели траспирации: интенсивность, транспирационный коэффициент, коэффициент водопотребления.
- •67. Влияние на транспирацию внешних факторов.
- •68. Саморегулирование транспирации.
- •69. Движущие силы восходящего тока воды. Нижний и верхний концевой двигатели, процессы когезии и адгезии.
- •70. Механизмы регуляции устьичной транспирации.
- •71. Механизмы регуляции внеустьичной транспирации.
- •72. Элементы минерального питания, необходимые для жизнедеятельности растений. Понятие о макро- и микроэлементах.
- •73. Роль и функциональные нарушения при недостатке в растении азота и фосфора.
- •74. Роль и функциональные нарушения при недостатке в растении калия и кальция.
- •75. Роль и функциональные нарушения при недостатке в растении серы и магния.
- •76. Роль и функциональные нарушения при недостатке в растении железа, меди, марганца.
- •77. Роль и функциональные нарушения при недостатке в растении цинка, молибдена, бор.
- •78. Структурная и каталитическая функция ионов в метаболизме.
- •79. Взаимодействие ионов: антагонизм, синергизм, аддитивность.
- •80. Поступление минеральных веществ. Транспорт ионов через плазматическую мембрану. Значение мембранного потенциала для процессов поступления ионов в клетку.
- •81. Пассивный и активный транспорт.
- •82. Ионные каналы.
- •83. Участие переносчиков и транспортных атФаз.
- •84. Радиальное перемещение ионов в корне: симпластический и апопластический пути.
- •85. Функции корневых тканей в радиальном транспорте.
- •86. Дальний транспорт ионов в растении. Восходящий и нисходящий ток минеральных элементов и веществ в растении.
- •87. Пространственная организация ионного транспорта в корне.
- •88. Интеграция и регуляция транспорта в целом растении.
- •89. Минеральное питание как фактор повышения продуктивности сельскохозяйственный растений.
- •90. Общие закономерности роста и развития растений. Кривая роста. Определение понятий ”онтогенез“, ”рост“ и ”развитие“.
- •91. Периодизация онтогенеза.
- •92. Показатели роста растений.
- •93. Клеточные основы роста и развития.
- •94. Локализация роста у растений. Ростовые корреляции. Полярность. Тотипотентность.
- •95. Зависимость роста от экологических факторов (свет, температура, водообеспеченность, минеральное питание).
- •96. Явление покоя, его адаптивная функция. Типы покоя и факторы его обусловливающие.
- •97. Фитогормоны как факторы, регулирующие рост и развитие растений. Локализация биосинтеза фитогормонов в растении и их транспорт.
- •98. Ауксины
- •99. Гиббереллины
- •100. Цитокинины
- •101. Абсцизовая кислота
- •102. Этилен.
- •103. Брассиностероиды
- •104. Жасминовая и салициловая кислоты
- •105. Системин и др.
- •106. Синтетические регуляторы роста, их природа и использование: гербициды, ретарданты, регуляторы созревания и покоя, дефолианты.
- •107. Движение растений. Ростовые и тургорные движения растений.
- •108. Тропизмы, виды тропизмов.
- •109. Настии, их типы.
- •110. Развитие растений, основные этапы. Жизненный цикл растений.
- •111. Термопериодизм. Фотопериодизм. Регуляция фотопериодических реакций фитохромом.
- •112. Стресс, адаптация, устойчивость. Общие понятия. Триада Селье.
- •113. Критические периоды воздействия стрессовых факторов на растения.
- •114. Стресс-белки.
- •115. Действие низких положительных температур и холодоустойчивость растений. Приспособление растений к низким положительным температурам. Способы повышения холодостойкости растений.
- •116. Действие отрицательных температур и морозоустойчивость растений. Причины вымерзания растений. Физиолого-биохимическая природа устойчивости растений к отрицательным температурам.
- •117. Действие высоких температур и жароустойчивость растений. Изменение обмена веществ, роста и развития растений.
- •118. Водный дефицит и засухоустойчивость растений. Совместное действие на растение недостатка влаги и высокой температуры.
- •119. Особенности устойчивости у мезофитов и ксерофитов.
- •120. Растения в условиях гипоксии и аноксии. Анатомо-морфологические приспособления и активирование анаэробного метаболизма в условиях недостатка кислорода. Акклимация растений к аноксии.
- •121. Солевой стресс. Виды засоления. Группы растений по устойчивости к засолению.
- •122. Газоустойчивость растений. Формы устойчивости.
- •123. Физиолого-биохимические основы устойчивости растений к фитопатогенам.
68. Саморегулирование транспирации.
Ответ. Различают два типа регуляции транспирации: устьичпый и виеустьичный. Устьичная регуляция осуществляется с помощью открывания и закрывания устьиц. Закрывание устьиц наполовину мало влияет на интенсивность транспирации. Полное их закрывание сокращает транспирацию примерно на 90%. Внеустьичная регуляция транспирации — это, прежде всего, уменьшение испарения воды в межклетники, которое осуществляется с помощью нескольких механизмов. Первый механизм связан с обезвоживанием стенок клеток мезофилла, с поверхности которых идет испарение. Этот механизм назвали механизмом начинающегося подсушивания. Если в лист приходит меньше воды, то клеточные стенки хлоренхимы начинают подсыхать. Если воды мало, водные мениски в капиллярах между фибриллами целлюлозы становятся вогнутыми, что увеличивает силы поверхностного натяжения, и испарение идет медленнее. Второй механизм связан со способностью цитоплазмы связывать воду. На его существование указывает тот факт, что при одной и той же степени открытости устьиц интенсивность транспирации может сильно меняться. Крахмал может превратиться в глюкозо-1-фосфат не только в замыкающих клетках устьиц, но и в клетках хлоренхимы. В результате произойдет уменьшение водного потенциала этих клеток, а значит, и транспирации. Может изменяться толщина кутикулы, покрывающей листья. Увеличение ее толщины уменьшает транспирацию с поверхности листьев. Наблюдения с помощью электронного микроскопа показали, что в кутикуле могут образовываться трещины, что увеличивает кутикулярную транспирацию. Кроме того, кутикула обладает интересным свойством: при подсыхании наружных стенок клеток эпидермы слои кутикулы плотнее придвигаются друг к другу, и испарение воды уменьшается. При увеличении оводненности эпидермы кутикула набухает, разрыхляется, и кутикуляр- пая транспирация увеличивается. Таким образом, скорость кутикулярной транспирации может регулироваться оводнениостыо листовой пластинки. По ночам, при более сильном набухании кутикулы, кутикулярная транспирация идет быстрее, чем днем. Эти механизмы уменьшения интенсивности транспирации выгодны тем, что не влияют на поглощение углекислого газа. Когда устьица только начинают открываться, интенсивность транспирации растет почти линейно. Однако когда устьица широко открыты, дальнейшее увеличение щели не влияет заметно на интенсивность транспирации. Следовательно, при максимально открытых устьицах скорость транспирации регулирует в основном внеустьичный механизм. При закрытых устьицах уменьшение кутикулярной транспирации происходит за счет внеустьичной регуляции. Поскольку количество воды, теряемой растением, зависит не только от интенсивности транспирации, но и от общей испаряющей поверхности побега или всего растения, то при недостатке воды растение может терять листья. Например, у сахарного тростника в условиях засухи на побеге может остаться только один лист. Одновременно недостаточное поступление воды вызывает торможение растяжения клеток, в результате задерживается рост новых листьев, образуются более мелкие листья, т.е. сокращается транспирирующая поверхность. Листопад у деревьев умеренной зоны — это приспособление к зимней засухе. Зимой из-за низкой температуры почвы корни плохо дышат, поэтому плохо поглощают соли, и в результате вода медленно поступает в растение. Однако листопадные деревья встречаются и в тропиках, и в пустынях. Эти деревья теряют листья в начале сухого сезона. У гигрофитов нет приспособлений, ограничивающих расход воды. В их листьях мало устьиц, которые всегда открыты, а кутикула развита слабо, поэтому кутикулярная транспирация велика. Избыток воды выделяется наружу с помощью гидатод. У полностью погруженных в воду гидрофитов транспирация отсутствует. Основной механизм регулирования водного обмена — ограничение поступления воды, которая поступает через всю поверхность.