
- •Физиология растений теория
- •1. Предмет и объект физиологии растений. Разнообразие объектов, характеризующихся фототропным образом жизни. Проблемы и задачи современной физиологии растений.
- •2. Этапы развития физиологии растений, ее связь с общим развитием биологии и практикой.
- •3. Структура компонентов растительной клетки, особенности строения в связи с их биологической функцией. Клеточная стенка.
- •4. Структура компонентов растительной клетки, особенности строения в связи с их биологической функцией. Цитоплазма, микротрубочки, микрофиламенты.
- •5. Структура компонентов растительной клетки, особенности строения в связи с их биологической функцией. Ядро, рибосомы.
- •6. Структура компонентов растительной клетки, особенности строения в связи с их биологической функцией. Пластиды, митохондрии.
- •7. Структура компонентов растительной клетки, особенности строения в связи с их биологической функцией. Вакуоль, пероксисомы, лизосомы.
- •8. Структура компонентов растительной клетки, особенности строения в связи с их биологической функцией. Эндоплазматический ретикулум. Аппарат Гольджи.
- •9. Функциональное взаимодействие различных органоидов клетки.
- •10. Физико-химические свойства цитоплазмы, ее взаимодействие с внешней средой.
- •11. Структура и функция мембран растительной клетки. Проницаемость мембран.
- •12. Принципы регулирования физиологических процессов клеткой.
- •13. Физико-химическая сущность фотосинтеза и его роль в процессах энергетического и пластического обмена растительного организма. Общие закономерности и значение фотосинтеза.
- •14. Структурная организация фотосинтетического аппарата. Лист как орган фотосинтеза.
- •15. Хлоропласты, их строение, биохимический состав и функции. Биогенез хлоропластов.
- •16. Пигментные системы фотосинтезирующих организмов.
- •17. Хлорофиллы, их строение, химические и физические свойства. Функции хлорофиллов.
- •18. Биосинтез хлорофилла.
- •19. Каротиноиды, их строение, классификация, свойства и функции.
- •20. Билихромопротеины (фикобилины), их структура, свойства и функции.
- •21. Поглощение света пигментами. Законы поглощения света.
- •22. Электронно-возбужденные состояние пигментов и типы дезактивации возбужденных состояний.
- •23. Флуоресценция.
- •24. Фосфоресценция.
- •25. Миграция энергии в системе фотосинтетических пигментов. Понятие о фотосинтетической единице и реакционных центрах.
- •26. Представление о функционировании двух фотосистем, их структура и назначение.
- •27. Структура электрон-транспортной цепи фотосинтеза.
- •28. Фотофосфорилирование, его типы, характеристика.
- •29. Классификация растений по метаболизму со2 в фотосинтезе.
- •30. Метаболизм углерода в процессе фотосинтеза. С3-путь фотосинтеза, основные этапы, их характеристика.
- •31. Природа первичного акцептора углекислоты.
- •33. Метаболизм углерода по типу толстянковых (сам-цикл).
- •34. Фотодыхание и метаболизм гликолевой кислоты (с2 -путь).
- •35. Показатели фотосинтеза: интенсивность, фотосинтетический потенциал, индекс листовой поверхности.
- •36. Фотосинтез и урожай.
- •37. Зависимость фотосинтеза от факторов внешней среды.
- •38. Эндогенная регуляция фотосинтеза.
- •39. Значение дыхания в жизни растений. Теория в.И. Палладина.
- •40. Показатели дыхания: интенсивность и дыхательный коэффициент.
- •41. Ферментные системы дыхания. Участие ферментов различных классов в дыхании.
- •42. Дыхательные субстраты. Пути диссимиляции углеводов.
- •43. Гликолиз, его суть, энергетика.
- •44. Цикл ди- и трикарбоновых кислот, его суть, энергетика.
- •47. Использование в качестве дыхательных субстратов жиров и белков. Взаимосвязь превращения углеводов, белков и жиров.
- •48. Митохондрии, их структура и функции.
- •49. Электрон-транспортная цепь дыхания, характеристика ее компонентов.
- •50. Окислительное фосфорилирование в электрон-транспортной цепи, энергетическая эффективность.
- •51. Субстратное и окислительное фосфорилирование.
- •52. Особенности дыхания у растений.
- •53. Зависимость дыхания от внутренних факторов.
- •54. Зависимость дыхания от внешних факторов.
- •55. Структура, свойства воды и ее роль в жизнедеятельности растений.
- •56. Термодинамические основы водообмена растений: активность воды, химический потенциал воды, водный потенциал, матричный потенциал, осмотический потенциал, гидростатический (потенциал давления).
- •57. Поступление воды в растение. Водный баланс растений.
- •58. Градиент водного потенциала - движущая сила поступления и передвижения воды в клетках, тканях и растении.
- •59. Механизмы поступления воды в растительную клетку.
- •60. Корневая система как орган поглощения воды.
- •61. Корневое давление, его значение и зависимость от действия внешних факторов.
- •62. Гуттация, ее суть и значение. ”Плач“ растений.
- •63. Транспирация как физиологический процесс. Биологическое значение транспирации. Типы транспирации.
- •64. Устьичная транспирация и физиология устьичных движений.
- •65. Внеустьичная транспирация.
- •66. Показатели траспирации: интенсивность, транспирационный коэффициент, коэффициент водопотребления.
- •67. Влияние на транспирацию внешних факторов.
- •68. Саморегулирование транспирации.
- •69. Движущие силы восходящего тока воды. Нижний и верхний концевой двигатели, процессы когезии и адгезии.
- •70. Механизмы регуляции устьичной транспирации.
- •71. Механизмы регуляции внеустьичной транспирации.
- •72. Элементы минерального питания, необходимые для жизнедеятельности растений. Понятие о макро- и микроэлементах.
- •73. Роль и функциональные нарушения при недостатке в растении азота и фосфора.
- •74. Роль и функциональные нарушения при недостатке в растении калия и кальция.
- •75. Роль и функциональные нарушения при недостатке в растении серы и магния.
- •76. Роль и функциональные нарушения при недостатке в растении железа, меди, марганца.
- •77. Роль и функциональные нарушения при недостатке в растении цинка, молибдена, бор.
- •78. Структурная и каталитическая функция ионов в метаболизме.
- •79. Взаимодействие ионов: антагонизм, синергизм, аддитивность.
- •80. Поступление минеральных веществ. Транспорт ионов через плазматическую мембрану. Значение мембранного потенциала для процессов поступления ионов в клетку.
- •81. Пассивный и активный транспорт.
- •82. Ионные каналы.
- •83. Участие переносчиков и транспортных атФаз.
- •84. Радиальное перемещение ионов в корне: симпластический и апопластический пути.
- •85. Функции корневых тканей в радиальном транспорте.
- •86. Дальний транспорт ионов в растении. Восходящий и нисходящий ток минеральных элементов и веществ в растении.
- •87. Пространственная организация ионного транспорта в корне.
- •88. Интеграция и регуляция транспорта в целом растении.
- •89. Минеральное питание как фактор повышения продуктивности сельскохозяйственный растений.
- •90. Общие закономерности роста и развития растений. Кривая роста. Определение понятий ”онтогенез“, ”рост“ и ”развитие“.
- •91. Периодизация онтогенеза.
- •92. Показатели роста растений.
- •93. Клеточные основы роста и развития.
- •94. Локализация роста у растений. Ростовые корреляции. Полярность. Тотипотентность.
- •95. Зависимость роста от экологических факторов (свет, температура, водообеспеченность, минеральное питание).
- •96. Явление покоя, его адаптивная функция. Типы покоя и факторы его обусловливающие.
- •97. Фитогормоны как факторы, регулирующие рост и развитие растений. Локализация биосинтеза фитогормонов в растении и их транспорт.
- •98. Ауксины
- •99. Гиббереллины
- •100. Цитокинины
- •101. Абсцизовая кислота
- •102. Этилен.
- •103. Брассиностероиды
- •104. Жасминовая и салициловая кислоты
- •105. Системин и др.
- •106. Синтетические регуляторы роста, их природа и использование: гербициды, ретарданты, регуляторы созревания и покоя, дефолианты.
- •107. Движение растений. Ростовые и тургорные движения растений.
- •108. Тропизмы, виды тропизмов.
- •109. Настии, их типы.
- •110. Развитие растений, основные этапы. Жизненный цикл растений.
- •111. Термопериодизм. Фотопериодизм. Регуляция фотопериодических реакций фитохромом.
- •112. Стресс, адаптация, устойчивость. Общие понятия. Триада Селье.
- •113. Критические периоды воздействия стрессовых факторов на растения.
- •114. Стресс-белки.
- •115. Действие низких положительных температур и холодоустойчивость растений. Приспособление растений к низким положительным температурам. Способы повышения холодостойкости растений.
- •116. Действие отрицательных температур и морозоустойчивость растений. Причины вымерзания растений. Физиолого-биохимическая природа устойчивости растений к отрицательным температурам.
- •117. Действие высоких температур и жароустойчивость растений. Изменение обмена веществ, роста и развития растений.
- •118. Водный дефицит и засухоустойчивость растений. Совместное действие на растение недостатка влаги и высокой температуры.
- •119. Особенности устойчивости у мезофитов и ксерофитов.
- •120. Растения в условиях гипоксии и аноксии. Анатомо-морфологические приспособления и активирование анаэробного метаболизма в условиях недостатка кислорода. Акклимация растений к аноксии.
- •121. Солевой стресс. Виды засоления. Группы растений по устойчивости к засолению.
- •122. Газоустойчивость растений. Формы устойчивости.
- •123. Физиолого-биохимические основы устойчивости растений к фитопатогенам.
26. Представление о функционировании двух фотосистем, их структура и назначение.
Ответ. Совокупность молекул светособирающего комплекса и реакционного центра составляет фотосистему. Квантовый выход фотосинтеза – это количество выделившегося кислорода или связанного углекислого газа на 1 квант поглощенной энергии. При одновременном освещении хлореллы коротковолновым (650 нм) и длинноволновым (700 нм) красным светом эффект выше, чем суммарный квантовый выход при воздействии красным светом этих длин в отдельности. Это явление получило название эффекта усиления Эмерсона. Позже предположение Р. Эмерсона о наличии двух фотосистем получило экспериментальное подтверждение. В состав ФС 1 в качестве реакционного центра входит димер пигмента П700 , а также хлорофиллы-А, играющие роль антенного компонента ФС 1. Первичным акцептором электронов в этой системе является мономерная форма хлорофилла А695 (А1), вторичными акцепторами А2 и Ав Комплекс ФС 1 под действием света восстанавливает водорастворимый белок феррефоксин и окисляет медьсодержащий водорастворимый белок пластоцианин. Белковый комплекс ФС 2 включает в себя реакционный центр, содержащий хлорофилл-А П680, а также антенные пигменты – хлорофиллы А670-683. Первичным акцептором электронов в этой фотосистеме выступает феафетина, передающий электроны на первичный пластохинон и далее на вторичный пластохинон, окисляющий воду, и переносчик электронов Z, связанный с системой S и слежащий донором электронов для П680. Этот комплекс функционирует с участием марганца, хлора и кальция. ФС2 восстанавливает пластохинон и окисляет воду с выделением кислорода и протонов. Связывающим звеном между ФС1 и ФС2 служит пул пластохинонов, белковый цитохромный комплекс b6-f, пластоцианин. В ходе эволюции ФС1 возникла раньше, она функционирует у ныне существующих фотосинтезирующих бактерий, фотосинтез которых осуществляется без выделения воды и кислорода(фоторедукция). В таком случае функцию доноров электронов для световой фазы выполняют такие легкоокисляемые соединения, как водород, метан, сероводород.
27. Структура электрон-транспортной цепи фотосинтеза.
Ответ. Электрон-транспортная цепь фотосинтеза (ЭТЦ фотосинтеза, цепь переноса электронов фотосинтеза) — последовательность переносчиков электронов, расположенных на белках фотосинтетических мембран и осуществляющих фотоиндуцированный транспорт электронов, сопряжённый с трансмембранным переносом протонов против электрохимического градиента. При транспорте электрона компонент с более положительным редокс-потенциалом служит восстановителем (донором электрона), а компонент с более отрицательным редокс-потенциалом — окислителем (акцептором электрона). Поток электронов в ЭТЦ может быть линейным или циклическим. Электрон-транспортная цепь хлоропластов организована в мембране тилакоидов и состоит из трёх полипептидных трансмембранных белковых комплексов (Фотосистема II, Цитохром-b6f-комплекс, Фотосистема I), с расположенными на них переносчиками, а также включает подвижные переносчики электронов (пул пластохинонов, пластоцианин и ферредоксин), обеспечивающие транспорт электронов между комплексами. Существует несколько возможных путей транспорта электронов в ЭТЦ, которые реализуются в соответствующих физиологических условиях: Линейный поток электронов (осуществляется по Z-схеме, при оптимальных условиях освещения); Циклический поток электронов в фотосистеме I (реализуется при высоких интенсивностях света) может осуществляться двумя путями: С участием ферредоксинхиноноксидоредуктазы FQR или При последовательном участии ферредоксин-НАД(Ф)H-оксидоредуктазы (ФНР) и НАД(Ф)H-дегидрогеназы; Циклический поток электронов в фотосистеме II (характерен при повышенной интенсивности освещения и при повреждении водоокисляющей системы). Псевдоциклический поток электронов (реакция Мелера; активируется при высоких интенсивностях света).