
- •Микробиология теория
- •1. Предмет и задачи микробиологии: ее место в современной биологии, роль для народного хозяйства и охраны здоровья.
- •2. Клеточная стенка: структура, химический состав и функции, окраска по Грамму.
- •3. Питательные среды.
- •4. Методы микробиологических исследований. Микроскопия. Правила работы с микроскопом.
- •5. Спиртовое брожение.
- •6. Процессы трансформации соединений фосфора.
- •7. Краткая история развития микробиологии.
- •8. Поступление питательных веществ в клетку прокариот (пассивная диффузия, облегченная диффузия, пассивный перенос, активный транспорт).
- •9. Взаимоотношения микроорганизмов с человеком и животными: нормальная микрофлора и патогенные микроорганизмы.
- •10. Особенности морфоструктуры прокариот.
- •11. Бактериальный фотосинтез и его отличие от фотосинтеза растений.
- •12. Влияние физических факторов среды на бактерии: лучистая энергия, ультразвук, реакция среды, свет.
- •13. Формы прокариот.
- •14. Карбонатное дыхание прокариот.
- •15. Процессы трансформации соединений серы.
- •16. Постоянные и временные структуры бактериальной клетки
- •17. Аэробное дыхание прокариот
- •18. Виды плазмид и их роль.
- •19. Цитоплазма и внутрицитоплазматические включения: строение и их функции.
- •20. Питание прокариот. Питательные вещества, факторы роста. Физиологические группы прокариот.
- •21. Структура генома прокариот.
- •22. Генетический аппарат прокариот.
- •23. Метаболизм прокариот: энергетический и конструктивный.
- •24. Общая характеристика представителей отдела Tenericutes.
- •25. Поверхностные структуры бактериальной клетки: капсула, слизистые чехлы, ворсинки.
- •26. Нитратное дыхание прокариот.
- •27. Разложение целлюлозы, гемицеллюлозы, лигнина и пектина.
- •28. Жгутики: их строение, размещение на клетке, механизм функционирования.
- •29. Пропионовокислое брожение.
- •30. Общая характеристика представителей отдела Firmicutes.
- •31. Эндоспоры и другие покоящиеся формы бактерий.
- •34. Химический состав прокариотической клетки.
- •35. Закономерность роста бактерий в периодической чистой культуре. Кривая роста, фазы роста бактериальной популяции.
- •36. Процессы трансформации соединений железа.
- •37. Ферменты: классификация ферментов, их роль в жизни микроорганизмов, особенности ферментативных реакций.
- •38. Процессы трансформации углеродсодержащих веществ.
- •39. Взаимоотношения микроорганизмов с растениями: Микрофлора ризосферы.
- •40. Молочнокислое брожение (гомо- и гетероферментативное).
- •41. Культивирование иммобилизационных клеток микроорганизмов.
- •42. Рекомбинация генетического материала прокариот. Трансформация, трансдукция, конъюгация.
- •43. Пути катаболизма глюкозы: путь Эмбдена-Мейергофа-Парнаса (Гликолиз).
- •44. Выделение чистой культуры и определение ее чистоты.
- •45. Общая характеристика представителей отдела Mendosicutes.
- •46. Анаэробное дыхание прокариот.
- •47. Микробные популяции: колонии, биопленки, зооглеи.
- •48. Влияние химических факторов среды на бактерии.
- •49. Маслянокислое брожение
- •50. Методы стерилизации.
- •51. Распространенность микроорганизмов в природе и их роль в круговороте веществ и других процессах.
- •52. Сульфатное дыхание прокариот.
- •53. Непрерывное проточное культивирование.
- •54. Взаимоотношения микроорганизмов. Ассоциативные и конкурентные взаимоотношения.
- •55. Фумаратное дыхание прокариот.
- •56. Получение накопительной культуры.
- •57. Инфекции.
- •58. Пути катаболизма глюкозы: путь Варбурга-Диккенса-Хореккера (пентозофосфатный).
- •59. Систематика прокариот: задачи, подходы при идентификации, системы классификации.
- •60. Влияние физических факторов среды на бактерии: температура, кислород.
- •61. Биосинтезы органических соединений у микроорганизмов.
- •62. Особенности культивирования анаэробных бактерий.
- •63. Эпифитные и фитопатогенные микроорганизмы.
- •64. Понятие роста, размножения. Основные параметры роста культур: время генерации прокариот, скорость роста и выход биомассы.
- •65. Классификация мутаций.
- •66. Распространение микроорганизмов в природе.
- •67. Поддержание (хранение) культур микроорганизмов.
- •68. Аммонификация белков, нуклеиновых кислот и мочевины.
- •69. Понятие о стерилизации, асептике, антисептике, дезинфекции. Пастеризация.
- •70. Фенотипическая и генотипическая изменчивость прокариот.
- •71. Подходы и критерии при идентификации.
- •72. Иммунитет. Факторы и механизмы естественной устойчивости.
- •73. Нитрификация. Денитрификация.
- •74. Общая характеристика представителей отдела Gracillicutes.
- •75. Антибиотики: механизм и спектр действия антибиотиков.
19. Цитоплазма и внутрицитоплазматические включения: строение и их функции.
Ответ. Цитоплазма – это содержимое клетки, окруженное цитоплазматической мембраной. Гомогенная фракция цитоплазмы, содержащая растворимые компоненты РНК, ферментные белки, вещества субстрата и продукты метаболических реакций, получила название цитозоля. Вторая фракция цитоплазмы представлена структурными элементами: рибосомами, внутрицитоплазматическими включениями и нуклеоидом. Цитоплазматические включения бактериальной клетки принято подразделять на включения, окруженные белковой мембраной, и включения, лишенные белковой мембраны. Примером включений, имеющих белковую мембрану, могут служить аэросомы (газовые вакуоли), обнаруженные только в клетках прокариот. Аэросомы характерны для многих групп бактерий, обитающих в водоемах и илах. Электронная микроскопия установила сотоподобную структуру аэросом, представленную массой газовых пузырьков, каждый из которых имеет форму цилиндра длиной 200–1000 нм и диаметром около 75 нм. Пузырьки ограничены однослойной белковой оболочкой толщиной 2 нм и заполнены газом. Предполагается, что состав газа аэросом аналогичен составу газов в окружающей среде. Аэросомы, снижая удельную массу бактериальной клетки, поддерживают ее во взвешенном состоянии в водоеме. Бактерии, имеющие аэросомы, обычно являются обитателями планктона. В клетках зеленых бактерий к внутрицитоплазматическим включениям относятся хлоросомы. Они имеют форму продолговатых пузырьков длиной 90–150 нм и диаметром 25–70 нм. Хлоросомы окружены однослойной белковой мембраной. В них локализованы бактериохлорофиллы, поглощающие световую энергию. В клетках цианобактерий присутствуют фикобилисомы, содержащие водорастворимые пигменты белковой природы – фикобилипротеиды. К внутрицитоплазматическим включениям в клетках некоторых фототрофных и хемотрофных бактерий, а также всех цианобактерий относятся карбоксисомы, или полиэдрические тела. Они имеют форму многогранника диаметром 90–100 нм, окруженного однослойной белковой мембраной. Содержимое карбоксисом представлено в основном молекулами D-рибулезо-1, 5-дифосфаткарбоксилазы – ключевого фермента, катализирующего фиксацию углекислого газа в процессах фото- и хемосинтеза. К специфическим включениям относятся рапидосомы, магнитосомы, R-тела. Примером внутрицитоплазматических включений, имеющих приспособительное значение, служат магнитосомы и газовые вакуоли, или аэросомы, обнаруженные у водных прокариот. Газовые вакуоли найдены у представителей, относящихся к 15 таксономическим группам. Это сложно организованные структуры, напоминающие пчелиные соты. Состоят из множества регулярно расположенных газовых пузырьков, имеющих форму вытянутого цилиндра с заостренными концами (диаметр 65—115, длина 200—1200 нм). Каждый пузырек окружен однослойной белковой мембраной толщиной 2—3 нм, построенной из одного или двух видов белковых молекул, и заполнен газом, состав которого идентичен таковому окружающей среды. Мембрана газовых пузырьков проницаема для газов, но не проницаема для воды. Число газовых пузырьков, составляющих аэросому, у разных видов различно и зависит от внешних условий. Основная функция газовых вакуолей состоит в обеспечении плавучести водных организмов, которые с их помощью могут регулировать глубину, выбирая более благоприятные условия. При увеличении объема и числа газовых пузырьков плотность цитоплазмы уменьшается, и клетки перемещаются в верхние слои воды. Сжатие газовых пузырьков, наоборот, приводит к погружению клеток. За несколькими исключениями, газовые вакуоли присущи безжгутиковым видам. Их, вероятно, можно рассматривать как альтернативу жгутикам для движения в вертикальной плоскости. Запасные вещества прокариот представлены полисахаридами, липидами, полипептидами, полифосфатами, отложениями серы. Из полисахаридов в клетках откладываются гликоген, крахмал и крахмалоподобное вещество — гранулеза. Последняя — специфический запасной полисахарид анаэробных споровых бактерий группы клостридиев. Названные полисахариды построены из остатков глюкозы. В неблагоприятных условиях они используются в качестве источника углерода и энергии. Липиды накапливаются в виде гранул, резко преломляющих свет и поэтому хорошо различимых в световой микроскоп. Запасным веществом такого рода является полимер b-оксимасляной кислоты, накапливающийся в клетках многих прокариот. У некоторых бактерий, окисляющих углеводороды, поли-b-оксимасляная кислота составляет до 70 % сухого вещества клеток. Отложение липидов в клетке происходит в условиях, когда среда богата источником углерода и бедна азотом. Липиды служат для клетки хорошим источником углерода и энергии. Другой широко распространенный тип запасных веществ многих прокариот — полифосфаты, содержащиеся в гранулах, называемых волютиновыми, или метахроматиновыми, зернами. Используются клетками как источник фосфора. Полифосфаты содержат макроэргические связи и, таким образом, являются депо энергии, хотя считается, что их роль как источника энергии незначительна. Специфическим запасным веществом цианобактерий являются цианофициновые гранулы. Химический анализ показал, что они состоят из полипептида, содержащего аргинин и аспарагиновую кислоту в эквимолярных количествах. Остов молекулы построен из остатков аспарагиновой кислоты, соединенных пептидными связями, а к ее b-карбоксильным группам присоединены остатки аргинина. Для синтеза цианофицина необходимы затравка, молекулы АТФ, ионы К + и Mg 2+. Для прокариот, метаболизм которых связан с соединениями серы, характерно отложение в клетках молекулярной серы. Сера накапливается, когда в среде содержится сероводород, и окисляется до сульфата, когда весь сероводород среды оказывается исчерпанным. Для аэробных тионовых бактерий, окисляющих H2S, сера служит источником энергии, а для анаэробных фотосинтезирующих серобактерий она является донором электронов.