
- •Микробиология теория
- •1. Предмет и задачи микробиологии: ее место в современной биологии, роль для народного хозяйства и охраны здоровья.
- •2. Клеточная стенка: структура, химический состав и функции, окраска по Грамму.
- •3. Питательные среды.
- •4. Методы микробиологических исследований. Микроскопия. Правила работы с микроскопом.
- •5. Спиртовое брожение.
- •6. Процессы трансформации соединений фосфора.
- •7. Краткая история развития микробиологии.
- •8. Поступление питательных веществ в клетку прокариот (пассивная диффузия, облегченная диффузия, пассивный перенос, активный транспорт).
- •9. Взаимоотношения микроорганизмов с человеком и животными: нормальная микрофлора и патогенные микроорганизмы.
- •10. Особенности морфоструктуры прокариот.
- •11. Бактериальный фотосинтез и его отличие от фотосинтеза растений.
- •12. Влияние физических факторов среды на бактерии: лучистая энергия, ультразвук, реакция среды, свет.
- •13. Формы прокариот.
- •14. Карбонатное дыхание прокариот.
- •15. Процессы трансформации соединений серы.
- •16. Постоянные и временные структуры бактериальной клетки
- •17. Аэробное дыхание прокариот
- •18. Виды плазмид и их роль.
- •19. Цитоплазма и внутрицитоплазматические включения: строение и их функции.
- •20. Питание прокариот. Питательные вещества, факторы роста. Физиологические группы прокариот.
- •21. Структура генома прокариот.
- •22. Генетический аппарат прокариот.
- •23. Метаболизм прокариот: энергетический и конструктивный.
- •24. Общая характеристика представителей отдела Tenericutes.
- •25. Поверхностные структуры бактериальной клетки: капсула, слизистые чехлы, ворсинки.
- •26. Нитратное дыхание прокариот.
- •27. Разложение целлюлозы, гемицеллюлозы, лигнина и пектина.
- •28. Жгутики: их строение, размещение на клетке, механизм функционирования.
- •29. Пропионовокислое брожение.
- •30. Общая характеристика представителей отдела Firmicutes.
- •31. Эндоспоры и другие покоящиеся формы бактерий.
- •34. Химический состав прокариотической клетки.
- •35. Закономерность роста бактерий в периодической чистой культуре. Кривая роста, фазы роста бактериальной популяции.
- •36. Процессы трансформации соединений железа.
- •37. Ферменты: классификация ферментов, их роль в жизни микроорганизмов, особенности ферментативных реакций.
- •38. Процессы трансформации углеродсодержащих веществ.
- •39. Взаимоотношения микроорганизмов с растениями: Микрофлора ризосферы.
- •40. Молочнокислое брожение (гомо- и гетероферментативное).
- •41. Культивирование иммобилизационных клеток микроорганизмов.
- •42. Рекомбинация генетического материала прокариот. Трансформация, трансдукция, конъюгация.
- •43. Пути катаболизма глюкозы: путь Эмбдена-Мейергофа-Парнаса (Гликолиз).
- •44. Выделение чистой культуры и определение ее чистоты.
- •45. Общая характеристика представителей отдела Mendosicutes.
- •46. Анаэробное дыхание прокариот.
- •47. Микробные популяции: колонии, биопленки, зооглеи.
- •48. Влияние химических факторов среды на бактерии.
- •49. Маслянокислое брожение
- •50. Методы стерилизации.
- •51. Распространенность микроорганизмов в природе и их роль в круговороте веществ и других процессах.
- •52. Сульфатное дыхание прокариот.
- •53. Непрерывное проточное культивирование.
- •54. Взаимоотношения микроорганизмов. Ассоциативные и конкурентные взаимоотношения.
- •55. Фумаратное дыхание прокариот.
- •56. Получение накопительной культуры.
- •57. Инфекции.
- •58. Пути катаболизма глюкозы: путь Варбурга-Диккенса-Хореккера (пентозофосфатный).
- •59. Систематика прокариот: задачи, подходы при идентификации, системы классификации.
- •60. Влияние физических факторов среды на бактерии: температура, кислород.
- •61. Биосинтезы органических соединений у микроорганизмов.
- •62. Особенности культивирования анаэробных бактерий.
- •63. Эпифитные и фитопатогенные микроорганизмы.
- •64. Понятие роста, размножения. Основные параметры роста культур: время генерации прокариот, скорость роста и выход биомассы.
- •65. Классификация мутаций.
- •66. Распространение микроорганизмов в природе.
- •67. Поддержание (хранение) культур микроорганизмов.
- •68. Аммонификация белков, нуклеиновых кислот и мочевины.
- •69. Понятие о стерилизации, асептике, антисептике, дезинфекции. Пастеризация.
- •70. Фенотипическая и генотипическая изменчивость прокариот.
- •71. Подходы и критерии при идентификации.
- •72. Иммунитет. Факторы и механизмы естественной устойчивости.
- •73. Нитрификация. Денитрификация.
- •74. Общая характеристика представителей отдела Gracillicutes.
- •75. Антибиотики: механизм и спектр действия антибиотиков.
17. Аэробное дыхание прокариот
Ответ. Аэробное дыхание – основной процесс катаболизма (энергетического метаболизма) многих прокариот. При аэробном дыхании донором водорода или других электронов являются обычно органические (реже неорганические) вещества, а конечным акцептором электронов – молекулярный кислород. Аэробное дыхание характерно тем, что основное количество энергии при этом процессе образуется в электротранспортной цепи, то ест в результате мембранного фосфорилирования. Аэробное дыхание присуще широкому кругу микроорганизмов. Однако различают микроорганизмы – строгие аэробы и факультативные анаэробы. Последние, способны расти как в присутствии, так и в отсутствии кислорода. Факультативные анаэробы способны синтезировать АТФ (аденозинтрифосфорную кислоту) при брожении, но при наличии молекулярного кислорода способ получения АТФ меняется и начинается осуществляться процесс дыхания. К факультативным анаэробам относят микробы, у которых анаэробное дыхание происходит при использовании в качестве акцепторов электронов нитратов. Строгими анаэробами считаются микробы, осуществляющее анаэробное дыхание, при котором акцепторами электронов служат карбонаты и сульфаты. Процесс аэробного дыхания подразделяется на две фазы: Серия реакций, благодаря которым органический субстрат окисляется до CO2, а освобождающиеся атомы водорода перемещаются к акцепторам. Эта фаза состоит из цикла реакций гликолиза, приводящих к образованию пирувата (пировиноградной кислоты) и цикла реакций Кребса (цикла трикарбоновых кислот – ЦТК). Окисление освобождающихся атомов водорода кислородом с образованием аденозинтрифосфорной кислоты(АТФ). Обе фазы приводят к окислению субстрата до углекислого газа (CO2) и воды (H2O), и образованию биологически полезной энергии в виде различных соединений: аденозинтрифосфата (АТФ); цитозинтрифосфата (ЦТФ); уридинтрифосфата (УТФ); гуанозинтрифосфата (ГТФ); креатинфосфата; ацетилфосфата.
18. Виды плазмид и их роль.
Ответ. Плазмиды — внехромосомные мобильные генетические структуры бактерий, представляющие собой замкнутые кольца двунитчатой ДНК. Плазмиды способны автономно копироваться (реплицироваться) и существовать в цитоплазме клетки, поэтому в клетке может быть несколько копий плазмид. Плазмиды могут включаться (интегрировать) в хромосому и реплицироваться вместе с ней. Различают трансмиссивные инетрансмиссивные плазмиды. Трансмиссивные (конъюгативные) плазмиды могут передаваться из одной бактерии в другую. Плазмиды – необязательные автономные элементы клетки. Их можно убрать (элиминировать) из бактерии. Количество плазмид в бактериальной клетке может быть от 1 до 200. Выделяют плазмиды, находящиеся в виде отдельной замкнутой молекулы ДНК (эписомы) и встроенные в хромосому бактерии (интегрированные плазмиды). Плазмиды выполняют регуляторные и кодирующие функции. Первые направлены на компенсацию метаболических дефектов, вторые вносят в бактерию информацию о новых признаках. Как составляющая часть генетического материала бактерии плазмиды играют важную роль в ее жизнедеятельности, детерминируя такие характеристики, как способность продуцировать экзотоксины, ферменты или бактериоцины, устойчивость к лекарственным препаратам и т.д. Удвоение ДНК некоторых плазмид индуцирует деление бактерий, т.е. увеличивает их «плодовитость». Такие плазмиды обозначают как F-плазмиды или F-факторы. Плазмиды, детерминирующие устойчивость к лекарственным препаратам, называются R-плазмидами или R-факторами. Многие R-плазмиды являются трансмиссивными и, распространяясь в популяции бактерий, делают бактерию недоступной к воздействию бактериальных препаратов. Плазмиды патогенности контролируют вирулентные свойства микроорганизмов, детерминируя синтез факторов патогенности. Так, например, Ent-плазмида определяет синтез энтеротоксина. Конъюгативные (трансмиссивные) плазмиды переносятся от бактерии к бактерии внутри вида или между представителями близкородственных видов в процессе конъюгации. Чаще всего конъюгативными плазмидами являются F- или R-плазмиды. Подобные плазмиды относительно крупные (25-150 млн Д) и часто выявляются у грамотрицательных палочек. Неконъюгативные плазмиды обычно имеют небольшие размеры и характерны для грамположительных кокков, но встречаются также у некоторых грамотрицательных микроорганизмов (например, у Haemophilus influenzae, Neisseria gonorrhoeae). Мелкие плазмиды могут присутствовать в больших количествах (более 30 на клетку), так как только наличие такого количества обеспечивает их распределение в потомстве во время клеточного деления. Функции. Перенос генетического материала при конъюгации — F-плазмида; плазмиды бактериоциногенности контролируют синтез белков, летальных для других бактерий — Col-плазмиды; синтез гемолизинов — (являются конъюгативными); устойчивость к тяжёлым металлам; устойчивость к антибиотикам (R-плазмиды); синтез энтеротоксинов — Ent-плазмиды; устойчивость к УФ-излучению; синтез антигенов, обеспечивающих адгезию бактерий на клетках в организме человека и животных — плазмиды антигенов колонизации.