Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Posobie_farmakologia_chast_1

.pdf
Скачиваний:
54
Добавлен:
12.02.2015
Размер:
7.69 Mб
Скачать

211

рий от повреждения (особенно после того, как в ишемизированную ткань вновь начинает поступать кровь, богатая кислородом).

3.Актопротекторный эффект – поддержание высокой двигательной и физической активности организма в экстремальных условиях без увеличения потребления кислорода и истощения энергетических запасов в клетке. Актопротекторный эффект бемитила отличается от тонизирующего действия психостимуляторов (см. табл. 8).

Таблица 8. Актопротекторное и психостимулирующее действие лекарств.

 

Актопротекторы (бемитил)

 

 

Психостимуляторы (амфетамин)

 

 

 

 

 

В бóльшей мере стимулируют физиче-

 

В бóльшей мере стимулируют психиче-

 

скую работоспособность и меньше влия-

 

скую активность и меньше – физическую

 

ют на психические функции.

 

работоспособность.

Эффект развивается постепенно, к 3-5

 

Эффект развивается после однократного

 

дню приема.

 

применения.

Длительный прием не вызывает истоще-

 

Длительный прием вызывает истощение

 

ния макроэргических субстратов клетки.

 

макроэргических субстратов клетки.

При регулярном применении не вызыва-

 

При регулярном применении вызывают

 

ют зависимость

 

психическую зависимость.

4.Психомодулирующее действие. Показано, что бемитил оказывает на психические функции организма неоднозначное воздействие. У некоторых пациентов он оказывает тимостимулирующее действие – повышает настроение, снижает потребность во сне, активирует ассоциативную деятельность. У другой группы пациентов прием бемитила вызывает психоседативный эффект, сопровождающийся устранением тревоги, психического напряжения, нормализаецией сна.

Причины столь двойственного влияния бемитила на психические функции до конца не ясны. Одни исследователи полагают, что это связано с генетическими особенностями фармакокинетики бемитила: у пациентов с быстрым типом метаболизма бемитила и высокой биодоступностью реализуется психоактивирующий эффект лекарства, а у лиц с медленной элиминацией бемитила и низкой биодоступностью реализуется психоседативный эффект. Однако, существует мнение, что двойственное воздействие бемитила на психику пацента может зависеть от его исходного психотипа. У пациентов с психосоциальным типом «А» («тип лидера») преобладает психоседативное действие, у пациентов, принадлежащих к психотипу «В» («тип зависимого человека») преобладает стимулирующий эффект лекарства.

5.Брадикардитическое действие. Под влиянием бемитила замедляется ЧСС и генерация импульсов в синусном узле сердца. Полагают, что этот эффект может быть обусловлен блокадой кальциевых каналов Тm-типа в клетках проводящей системы сердца.

6.Иммуномодулирующее действие. Установлено, что прием бемитила способствует норма-

лизации соотношения Тh/Ts лимфоцитов и усиливает гуморальный компонент иммунитета. Назначение бемитила пациентам страдающим системной красной волчанкой и рецидивирующим рожистым воспалением позволяет ускорить время наступления ремиссии и продлить межрецидивный период.

Показания для применения и режимы дозирования.

Реабилитация пациентов, перенесших острые нарушения мозгового кровообращения (ишемический инсульт), лиц с наследственными нейро-мышечными заболеваниями (миодистрофии, миопатии). Применяют внутрь по 125-250 мг/сут в 1-2 приема курсами по 20-30 дней.

Интенсивные физические нагрузки у спортсменов в предсоревновательный период. Применяют внутрь по 500-1000 мг/сут в 2 приема 3 дня в неделю.

Вестибулярные растройства (болезнь Меньера, лабиринтит). Бемитил применяют для устранения головокружения, тошноты и рвоты вестибулярного происхождения, звона в ушах. Применяют по 125-250 мг/сут в 1-2 приема.

212

НЭ: Бемитил достаточно хорошо переносится, нежелательные реакции возникают, как правило, при длительном приеме высоких доз лекарства.

Диспепсические расстройства – тошнота, неприятные ощущения в области желудка и печени. Могут быть ослаблены, если лекарство принимать после еды.

Чрезмерное психоактивирующее действие с развитием раздражительности, уменьшения глубины и продолжительности ночного сна.

ФВ: таблетки по 125 и 250 мг в оболочке.

Инозин (Inosine, Inosie-F, Riboxin) МД: Пуриновый нуклеозид, предшественник АТФ.

При введении в организм человека он легко проникает внутрь клетки, где подвергается вначале фосфорилированию, а затем трансаминированию с образованием молекулы АТФ.

ФЭ:

1.Анаболическое действие. Под влиянием инозина в клетках миокарда, скелетных мышц и слизистой оболочки ЖКТ усиливается синтез нуклеиновых кислот, быстрообменивающихся белков. Наиболее выражено анаболическое действие инозина на слизистую ЖКТ, наиме-

нее заметное анаболическое действие отмечается в скелетных мышцах. Ткани миокарда – занимают промежуточное положение в этом ряду.

2. Инозин способен связывать ионы Са2+, которые поступают в кардиомиоцит во время систолы. Вследствие этого, инозин обеспечивает полноценное протекание диастолы.

Показания к применению. Инозин применяют при кардиомиопатиях, миокардитах и миокардиодистрофии различного генеза (токсических, инфекционных, эндокринных и др.), в составе комплексной терапии гепатитов и циррозов печени, вызыванных воздействием гепатотропных ядов (этанол, фенотиазины, четыреххлористый углерод и др.).

Ранее широко рекомендовалось применение инозина при ишемической болезни сердца (стенокардии, инфаркте миокарда). Однако, в ходе плацебо-контролируемых многоцентровых исследований было установлено, что его эффект не отличается от плацебо и не влияет на эффективность базисной терапии этих состояний.

Инозин является слабым агонистом пуриновых А1-и А2-рецепторов в дыхательных путях и миокарде, поэтому он способен ослабить бронходилятирующий эффект метилксантинов, которые блокируют эти рецепторы. Это свойство инозина может применяться при лечении передозировки метилксантинов (теофиллина, аминофиллина).

Режим дозирования. Инозин применяют внутрь по 600-800 мг/сут в 3 приема, при хорошей переносимости дозу в течение 2-3 дней увеличивают до 1,2-2,4 г/сут. Курс лечения продолжается 1-3 месяца.

При лечении интоксикации метилксантинами можно прибегнуть к внутривенному капельному медленному введению инозина в дозе 200-400 мг.

НЭ:

Зуд и гиперемия кожи, особенно при быстром внутривенном введении.

В процессе метаболизма инозина и под влиянием активации синтеза пуриновых нуклеотидов в крови повышается концентрация продукта их обмена – мочевой кислоты. У предрасположенных к подагре пациентов это может спровоцировать дебют заболевания.

ФВ: таблетки по 200 мг в оболочке, раствор 2% в ампулах по 10 мл.

Аденозин фосфат (Adenosine phosphate, Adenil, Phosphaden, Vitamine B8) Является молекулой АМФ.

МД: В организме подвергается фосфорилированию с образованием АДФ и АТФ. Все три соединения выступают как агонисты пуриновых рецепторов А1-и А2-типа.

ФЭ:

1.Антигипоксическое действие. Образующиеся из АМФ макроэргические соединения АДФ и АТФ выступают как доноры энергии в клетке. АМФ входит в состав коферментов дыхательных цепей митохондрий. Однако, следует отметить, что фосфатные группы всех трех молекул АМФ, АДФ и АТФ при физиологическом рН

213

сильно поляризованы, поэтому внутрь клетки поступают очень плохо.

2.Противоаритмическое действие. АМФ связывается с пуриновыми А1-рецепторами, которые располагаются на клетках AV-узла проводящей системы сердца и активируют эти рецепторы. Пуриновые рецепторы вызывают открытие АТФ-зависимых К+-каналов в клетках проводящей системы сердца. Выход ионов калия из клеток приводит к гиперполяризации их мембраны и проведение импульсов через атрио-вентрикулярный узел блокируется. Противоаритмическое действие АМФ кратковременное и продолжается 10-15 мин, это связано с тем, что он очень быстро включается в метаболические процессы и покидает рецептор.

3.АМФ оказывает сосудорасширяющее действие, причем в области ишемизированных участков ткани вызодилятирующий эффект АМФ выражен сильнее, чем в хорошо оксигенированных тканях.

4.Антиагрегантное действие. На поверхности тромбоцитов имеются пуриновые Р2Y- рецепторы. Активатором этих рецепторов является АДФ. Под влиянием АДФ рецепторы стимулируют сборку на поверхности тромбоцитов интегриновых молекул с образованием рецептора IIb/IIIa типа. Этот рецептор имеет очень высокое сродство к фибриногену и вызывает быструю агрегацию тромбоцитов на поверхности фибриногеновых нитей. АМФ

выступает в роли конкурентного антагониста АДФ. Он связывается с Р2Y-рецепторами и блокирует их, не позволяя АДФ активировать рецептор и запустить процесс агрегации тромбоцитов.

5.Нормализация биосинтеза порфиринов. АМФ является коферментом уропорфириноген III косинтазы и может улучшить синтез уропорфирина III у пациентов с приобретенными дефектами синтеза гема (например, при интоксикации свинцом) или у больных с острой перемежающейся порфирией.

Применение и режим дозирования.

Купирование узловой формы пароксизмальной тахикардии и других узловых тахиаритмий (например, аритмий при WPW-синдроме). При этих формах аритмий атриовентрикулярный узел берет на себя роль водителя ритма и начинает генерировать импульсы высокой частоты, что проявляется внезапным приступом сердцебиения. При WPW-синдроме (синдроме Wolff-Parkinson-White) развитие аритмии связано с наличием

дополнительного проводящего пути (так называемый пучок Кента) между предсердиями и желудочками помимо AV-узла.

Вводят АМФ внутривенно болюсом (в течение 2 секунд). Используют 0,3% раствор (либо разводят 1 мл 2% раствора в 6 мл физиологического раствора). Вначале вводят 6 мг лекарства (2 мл), если эффект не наступает, через 1-2 минуты повторяют введение препарата в дозе 12 мг (4 мл) еще 1-2 раза. Если после введения третьей дозы эффект не был достигнут, введение прекращают.

Противоаритмическое действие АМФ напоминает «удар в сердце» - пациент ощущает «внутренний толчок» и сердцебиение исчезает – ритм нормализуется.

Лечение острой перемежающейся порфирии и отравления свинцом. Назначают внутрь по 25-50 мг 2-3 раза в день в течение 2-4 недель. Следует помнить, что АМФ не влияет на работу ферментов, которые обеспечивают дальнейший метаболизм уропорфириногена III

– уропорфириноген декарбоксилазы, копропорфириноген III оксидазы и протопорфириноген IX оксидазы. Поэтому, применение АМФ при порфириях, вызванных дефектами этих ферментов (Porfiria cutaneatarda, Врожденная копропорфирия и Porfiria variegata)

бессмысленно.

НЭ: При приеме внутрь в больших дозах возможно появление тошноты и рвоты, металлического привкуса во рту.

Вследствие активации пуриновых рецепторов бронхов АМФ, как и инозин, способен спровоцировать развитие бронхоспазма (одышка, чувство стеснения в груди). Чрезмерная блокада проведения импульсов может привести к развитию брадикардии и атриовентрикулярной блокады.

ФВ: таблетки по 25 и 50 мг, раствор 2% в ампулах по 1 мл и 0,3% в ампулах по 2 мл.

214

Фосфокреатин (Phosphocreatine, Neoton) МД: Креатинфосфат или фосфокреатин – макроэргическое соединение, которое является аккумулятором энергии в тканях мышц, нервной системы и миокарде. Энергия фосфатной группировки креатина настолько высока, что может обеспечить ресинтез АТФ из АДФ.

Содержание креатинфосфата в мышцах и миокарде в 5 раз превышает содержание АТФ и его уровень очень важен для обеспечения работы этих тканей. Скорость работы мышц зависит исключительно от скорости, с которой в них может протекать регенерация АТФ. Так, на-

пример, в покое скорость синтеза АТФ для поддержания жизненно-важных функций должна составлять 0,07 моль/мин, при беге она должна составлять 1,7-2,0 моль/мин. У современных спринтеров (при забеге на 100-400 м) скорость образования макроэргических субстратов составляет 2,3-2,6 моль/мин.

Мышечная ткань способна получать энергию 5 путями. В таблице 9 представлена максимально возможная скорость синтеза АТФ при каждом из этих путей и максимальное количество АТФ, которое при этом может синтезироваться в организме человека массой 70 кг.

Таблица 9. Максимальная скорость синтеза и количество АТФ в процессе катаболизма.

 

Вид получения энергии

 

 

Максимальная скорость

 

 

Количество АТФ,

 

 

 

 

 

 

 

 

 

 

 

 

 

синтеза АТФ, моль/мин

 

 

моль

 

 

 

 

 

 

 

 

1.

Дефосфорилирование креатинфосфата

4,4

 

0,67

 

2.

Анаэробный гликолиз

2,35

 

6,7

 

3.

Окисление гликогена

0,85-1,14

 

84

 

4.

Аэробный гликолиз

0,16

 

18

 

5.

-окисление жирных кислот

0,4

 

4.000

 

Таким образом, гидролиз креатинфосфата обеспечивает самый быстрый путь получения энергии16.

ФЭ: Оказывает кардиопротективное и нейропротективное действие. После введения в

организм креатинфосфат легко проникает через гистогематические барьеры и быстро аккумулируется в тканях миокарда и нейронах ЦНС, в том числе и в тех, где имеется ишемия или гипоксия.

Креатинфосфат без участия кислорода при помощи фермента креатинфосфокиназы переносит фосфатные группировки на АДФ и обеспечивает синтез АТФ без кислорода в ишемизированном миокарде. В итоге, несмотря на недостаток кислорода, в тканях миокарда протекает синтез биологически важных субстратов, обеспечивается работа ионных насосов мембраны и генерация сердечного ритма, осуществляется сокращение миокарда и изгнание крови в сосуды.

Показания для применения и режимы дозирования.

1.Острый период инфаркта миокарда (в первые сутки). Вводят внутривенно болюсом 2,0- 4,0 г креатинфосфата после чего в течение 2 часов проводят капельное введение еще 8-16 г лекарства (для этого порошок креатинфосфата растворяют в 200 мл физиологического раствора или 5% глюкозы и вводят со скоростью 30-40 капель в минуту).

В последующие 6 суток препарат вводят внутривенно капельно в дозе 4-8 г/сут. Введение креатинфосфата позволяет ограничить и уменьшить размер зоны некроза миокарда, предупредить развитие угрожающих жизни аритмий, сохранить сократительную функцию миокарда.

2.Острые нарушения мозгового кровообращения. Неотон вводят внутривенно капельно медленно в виде непрерывной длительной инфузии со скоростью 120 мг/кг/сут в течение 6 и более суток.

3.Предсоревновательная подготовка у спортсменов спринтеров. Креатинфосфат применяют в дозе 3-4 г/сут в виде внутривенных капельных инфузий в течение 4-5 дней.

16 Интересно отметить, что поскольку гидролиз креатинфосфата может протекать со скоростью в 2 раза большей, чем имеется у современных спринтеров, показатели мирового рекорда по бегу на короткие дистанции теоретически могут быть улучшены почти в 2 раза.

215

НЭ: При быстром внутривенном введении в дозах выше 4 г можут вызвать резкое понижение АД.

ФВ: порошок по 1,0 во флаконах для инъекционного введения

Кокарбоксилаза (Cocarboxylase) Представляет собой готовую коферментную форму витамина В1 – тиамина пирофосфат.

МД: При введении в организм сразу включается в активный центр ферментов из группы декарбоксилаз-кетокислот и обеспечивает быструю утилизацию - кетокислот в цикле Кребса с образованием АТФ.

Показания к применению и режим введения. В настоящее время кокарбоксилазу применяют только по 2 показаниям:

Устранение метаболического ацидоза, связанного с накоплением -кетокислот при диабетической кетоацидотической коме, хроническом алкоголизме. Использвать в этих ситуациях для коррекции ацидоза и окисления -кетокислот сам тиамин нерационально – при ацидозе активность ферментов, фосфорилирующих тиамин резко падает и он не способен устранить ацидоз. Кокарбоксилазу вводят внутримышечно или внутривенно по 100-1000 мг/сут до коррекции ацидоза.

Синдром Лея (подострая некротическая инфантильная энцефалопатия) – недостаток фермента тиаминпирофосфат трансферазы, которая обеспечивает фосфорилирование тиамина в коферментную форму – тиаминпирофосфат. Проявляется анорексией, сонливостью (вплоть до летаргии), снижением АД. В последующем наблюдаются периода арефлексии, приступы нистагма, офтальмоплегии, паралича верхнего века и глухота. Приступы слабости часто чередуются с эпизодами спастичности, судорог, апноэ. Лече-

ние проводят пожизненным введением кокарбоксилазы по 25-50 мг/сут внутримышечно. Ранее введение кокарбоксилазы широко применялось для лечения аритмий, сердечной недостаточности, миокардитов. В настоящее время в ряде многоцентровых плацебоконтролируемых исследований было убедительно показано, что эффект кокарбоксилазы при лечении этих состояний не отличается от эффекта плацебо. Применение кокарбоксилазы не

позволяет ни замедлить прогрессирование болезни, ни продлить жизнь пациенту. НЭ: Кожные аллергические реакции (зуд, крапивница, отек в месте введения). ФВ: порошок в ампулах по 50 мг.

Цитохром С (Cytochrome C) Цитохром с представляет собой водорастворимый белок мембраны митохондрий, который состоит из полипептидной цепи и молекулы гема, ковалентно связанной с ней тиоэфирной связью.

МД: Цитохром быстро проникает в клетки и включается в дыхательные цепи, обеспечивая транспорт электронов от цитохрома b на цитохромы a. Транспорт электронов на участке цитохром b – цитохром c создает потенциал, достаточный для синтеза макроэргических связей АТФ.

ФЭ: Цитохром с нормализует процессы тканевого дыхания и оказывает антигипоксическое действие, которое особенно ярко выражено в бессосудистых тканях (роговица, хрусталик, эпидермис и др.).

Применение. До настоящего времени нет достаточных обоснований необходимости применения цитохрома с. Ни одно из многочисленных показаний, которые упоминаются в инструкциях фирм-производителей, не было подтверждено объективными клиническими испытаниями.

Наиболее обоснованным является применение цитохрома для лечения катаракты – помутнения хрусталика глаза. Считается, что одна из причин катаракты – нарушение трофики хрусталика и развитие локальной гипоксии.

Режим дозирования. Глазные капли для лечения катаракты закапывают по 1-2 капли в пораженный глаз 3 раза в день. При использовании инъекицонного введения цитохрома предварительно требуется провести внутрикожный тест с 0,1 мл цитохрома. Это связано с тем, что цитохром является белком и способен вызвать аллергическую реакцию. Если через

216

30 мин после введения цитохрома не отмечается гиперемии, зуда, крапивницы, то лекарство можно применять по 4-8 мл внутримышечно 1-2 раза в день (курс лечения 10-14 дней).

НЭ: аллрегические реакции, связанные с антигенной структурой пептида, входящего в молекулу цитохрома.

ФВ: раствор 0,25% во флаконах по 4 мл, таблетки по 10 мг кишечнорастворимые,

Oftan-Catachrom флаконы по 10 мл.

Милдронат (Mildronate) МД: Является структурным аналогом -бутиробетаина – предшественника L-карнитина. Милдронат связывает с активным центром фермента - бутиробетаин гидроксилазы и блокирует его. В итоге, в клетках нарушается синтез L-карнитина и транспорт жирных кислот через мембрану митохондрий для -окисления, происходит накопление предшест-

венника карнитина - -бутиробетаина.

ФЭ:

1.Антигипоксическое и кардиопротективное действие. Поскольку жирные кислоты не поступают в митохондрии для -окисления, клетка переключается на гликолитический путь получения энергии. В миокарде липолитический путь получения энергии преобладает над гликолитическим. Переход сердечной мышцы исключительно на гликолитический путь аккумулирования энергии позволяет ему более экономно расходовать кислород (из 1 моль кислорода при гликолизе удается получить 6,33 моль АТФ, тогда как при липолизе только 5,63 моль).

Кроме того, под влиянием милдроната, в эритроцитах усиливается синтез 2,3-бисфосфо- глицерата. Молекулы 2,3-бисфосфоглицерата связываются с -цепями гемоглобина и снижают его сродство к кислороду. В результате в тканях улучшается процесс освобождения кислорода из гемоглобина и его уровень в тканях повышается.

Предшественник карнитина -бутиробетаин оказывает вазодилятирующее действие и улучшает микроциркуляцию в тканях.

2.Улучшает переносимость физических нагрузок и повышает работоспособность. За счет активации гликолитического пути, под влиянием милдроната, утилизируются продукты неполного метаболизма глюкозы – пируват, лактат. Уменьшается локальный лактацидоз в тканях мышц, поэтому позже развивается мышечное утомление, а в посттренировочном периоде не возникают «тянущие» боли в мышцах.

Следует помнить, что по своему действию милдронат является антагонистом L- карнитина, поэтому сочетать их прием в процессе физических тренировок нерационально. Как правило, применение милдроната рекомендуется в начале тренировочного периода, у малотренированных лиц. L-карнитин следует принимать с середины тренировочного цикла, он более эффективен у лиц уже вошедших в спортивную форму.

3.Показано, что под влиянием милдроната повышается клеточный и гуморальный иммунитет.

4.Милдронат уменьшает выраженность вегетативного компонента алкогольного абсти-

нентного синдрома. Устраняет кардиалгии, срывы ритма, скачки АД, тремор, потливость и саливацию.

Применение и режим дозирования:

1.Реабилитация пациентов после инфаркта миокарда, стабильные формы стенокардии, миокардиодистрофии. Применяют внутрь по 250 мг 3 раза в день в течение 3-4 дней, затем по 250 мг 2 раза в неделю курс до 1,5 месяцев.

2.Прогрессирующая стенокардия, инфаркт миокарда или острое нарушение мозгового кровообращения. Вводят внутривенно медленно по 500-1000 мг/сут в течение 3-5 дней.

3.Спортсменам в начале тренировочного периода по 500-1000 мг 2 раза в день перед тренировками. Курс 14-21 день.

НЭ: При введении в больших дозах возможно появление боли в подложечной области, диареи. Поскольку L-карнитин – жизненно-важный фактор роста плода, милдронат нельзя применять у женщин в период беременности или кормления грудью.

ФВ: капсулы по 250 мг; раствор 10% в ампулах по 5 мл.

217

Триметазидин (Trimetazidine, Preductal, Vastarel) МД: Синтез макроэргических со-

единений (АТФ и креатинфосфата) в миокарде обеспечивается за счет -окисления жирных кислот, окисления кетоновых тел и аэробного гликолиза. Основным источником энергии ( 70-80% всего количества) является окисление жирных кислот. Процесс окисления включает 2 этапа – подготовительный и основной:

Подготовительный этап обеспечивает транспорт жирных кислот

кместу окисления – в цитозоль митохондрий, через их мембрану. Этот этап тесно связан с функционированием L-карнитиновго челнока и был подробно описан ранее (см. схему 5).

Основной цикл окисления обеспечивает последовательное окис-

ление жирных кислот по С -атому углеродной цепи. В итоге, цепь жирной кислоты распадается на отдельные молекулы ацетил-КоА, которые включаются в цикл трикарбоновых кислот. Работа цикла окисления обеспечивается 4 ферментами (схема 5). Первые 3 из них обеспечивают введение кислорода в -положение углеродной цепи, а последний – - кетоацил-КоА-тиолаза расщепляет окисленную цепь на 2 молекулы: ацетил-КоА и новую кислоту, которая короче предыдущей на 2 атома. После этого цикл окисления повторяется.

Триметазидин связывается с активным центром -кетоацил-КоА-тиолазы и блокирует этот фермент. В итоге, -окисление жирных кислот прекращается и миокард переходит на получение энергии гликолитическим путем.

ФЭ:

1.Антигипоксическое и антиангинальное действие. Под влиянием триметазидина в миокарде прекращается -окисление жирных кислот, которое требует большого количества кислорода

иэнергия начинает извлекаться путем гликолиза, который требует занчительно меньше кислорода. (При липолизе 1 моль кислорода дает 5,63 моль АТФ, при гликолизе – 6,33 моль.) Таким образом, миокард начинает расходовать кислород более экономично.

У пациентов с ИБС доставка кислорода в миокард снижена из-за того, что сосуды поражены атеросклерозом и холестериновые бляшки суживают их просвет. Триметазидин заставляет миокард расходовать кислород менее интенсивно и потребность клеток в кислороде приходит в соответствие с возможностями сосудов по его доставке.

2.Антиоксидантное действие. В ишемизированных участках миокарда происходит окисление металлоферментов. После устранения ишемии в эти участки устремляется кровь, богатая кислородом. Под воздействием окисленных металлоферментов из кислорода образуются активные формы радикалов (супероксидный радикал, гидроксидный радикал), которые повреждают те клетки, которые сумели пережить ишемию. Это т.н. «реперфузионное повреждение». Триметазидин способен связывать активные формы кислорода в нетоксичные продукты и предупреждать повреждение клеток.

3.Мембраностабилизирующее и цитопротекторное действие. В условиях ишемии - окисление жирных кислот не может завершиться полным окислением цепи. Окисляется только часть длинной цепочки и в клетке накапливаются коротко- и среднецепочечные жирные кислоты, которые содержат от 3 до 12 атомов углерода – пропионовая, бутановая, капроевая, каприловая, капроновая кислоты. Эти кислоты весьма токсичны и в обычных условиях при помощи L-карнитинового челнока они удаляются из митохондрий вновь подвергаются ресинтезу в длинноцепочечные кислоты. В условиях ишемии ресинтез кислот произойти не может и в клетке накапливаются токсичные коротко- и среднецепочечные кислоты. Под влиянием этих кислот возникают следующие изменения:

Аллостерически угнетается пируватдекарбоксилазный комплекс и ферменты цикла трикарбоновых кислот. Поскольку декарбоксилирование пирувата невозможно, он окисляется в лактат и развивается лактацидоз.

Лактацидоз и среднецепочечные кислоты нарушают работу Са2+-АТФаз эндоплазматической сети и мембраны митохондрий. Нарушается процесс удаления ионов кальция из цитоплазмы и в перегруженной кальцием клетке не может развиться полно-

218

ценная диастола. Кроме того, кальций активирует лизосомальные ферменты, повреждающие митохондрии.

Нарушается работа мембранных АТФаз клетки. Это приводит к флуктуациям потенциала мембраны и индукции аритмий.

Триметазидин блокирует окисление жирных кислот, поэтому в ишемизированном миокарде не образуются коротко- и среднецепочечные кислоты, не происходит развитие вышеописанных изменений.

Показания для применения. Основным показанием для применения триметазидина является лечение ишемической болезни сердца – стабильной формы стенокардии, реабилитация после перенесенного острого инфаркта миокарда, а также обратимой дисфункции миокарда – гибернирующего («спящего») миокарда.

Применение триметазидина приводит к снижению числа и частоты ангинозных приступов (приступов ишемии) в течение суток, уменьшает потребность пациента в нитратах на 52-66%. При использовании совместно с другими антиангинальными средствами триметазидин оказывает синергистическое действие и усиливает их эффект.

Эффективность триметазидина была подтверждена несколькими многоцентровыми рандомизированными клиническими испытаниями, выполненными в период с 1990 по 1996 гг: TEMS, TIBET, IMAGE. Однако, его роль в лечении ИБС все еще остается неопределенной. Так, в докладе Европейского общества кардиологов (ЕОК, 1997) посвященного лечению ИБС триметазидин упоминается как средство «способное оказать определенно полезное дей-

ствие при лечении ИБС», но его эффект не относят к бесспорно доказаным.

Установлено, также, что триметазидин может улучшить слух, устранить шум в ушах у пациентов с сосудистой патологией ЛОР-органов, болезнью Меньера, улучшить течение заболевания при поражении сосудов сетчатки (хореоретиниты).

Режим дозирования. Триметазидин применяют внутрь по 20 мг 2-3 раза в день во время еды. НЭ: Аллергические реакции (сыпь, зуд), крайне редко – тошнота и рвота.

ФВ: таблетки по 20 мг в оболочке.

БИОГЕННЫЕ СТИМУЛЯТОРЫ

Стимуляторы процессов регенерации тканей.

Регенерацией, называют способность ткани восстанавливать свою структуру при повреждении. Регенерация тканей осуществляется за счет наличия в ней стволовых (камбиальных) клеток. Эти клетки слабо дифференцированы и при повреждении ткани они начинают интенсивно делиться и дифференцироваться в специализированные клетки, которые выполняют функции, присущие данной ткани.

В отдельных тканях – кроветворная, эпидермис кожи – стволовые клетки находятся в состоянии постоянной активности и непрерывно делятся. В других тканях – костная, эпителий дыхательных путей и ЖКТ стволовые клетки относительно стабильны и активируются только при повреждении (перелом кости, язва желудка). К сожалению, ряд высокоспециализированных тканей (нервная, мышечная) имеют чрезвычайно стабильные стволовые клетки, которые не способны делиться даже при значительном повреждании ткани (инсульт, инфаркт миокарда).

В качестве стимуляторов регенерации тканей в настоящее время используют 3 группы лекарственных средств:

Препараты витаминов: витамины А, D, С, ВС и В12;

Анаболические стероиды: нандролон;

Стимуляторы лейкопоэза: метилурацил, калия оротат.

Более подробно об этих лекарственных средствах рассказано в соответствующих разделах. Ограничимся сейчас лишь краткой характеристикой цитостимулирующего действия этих средств.

219

Таблица 10. Краткая характеристика стимуляторов регенерации.

 

Средство

 

Стимулирующий эффект

Применение

Витамины:

 

 

 

 

 

 

 

Ретиноиды

 

Стимулируют регенерацию эпителиаль-

Лечение кожных ран, трофи-

 

 

 

ных тканей, стволовых клеток крови.

ческих язв, ожогов, свищей.

 

Кальциферолы

Стимулируют

регенерацию

костной

Лечение переломов и тре-

 

 

 

ткани.

 

 

щин костей.

 

Аскорбинат

 

Стимулирует регенерацию рыхлой со-

Лечение кожных ран, трофи-

 

 

 

единительной ткани (синтез коллагена).

ческих язв, ожогов, свищей.

 

ВС и В12

 

Стимулирует регенерацию стволовых

Лечение

гиперхромных и

 

 

 

клеток эритроидного ряда.

 

апластических анемий.

Анаболические

сте-

Стимулируют

регенерацию

эпители-

Лечение переломов, язвен-

роиды

 

альных тканей, костной ткани, крове-

ных поражений ЖКТ, апла-

 

 

 

творных клеток.

 

стических анемий.

Стимуляторы

лей-

Стимулируют

регенерацию

крове-

Лечение

нарушений лейко-

копоэза

 

творных клеток, эпителия ЖКТ.

поэза, язвенных поражений

 

 

 

 

 

 

ЖКТ.

 

Как легко видеть, данные средства воздействуют на процессы регенерации в достаточно лаюбильных, хорошо регенерирующих тканях. Проблема регенерации стабильных тканей

– мышечной, нервной – не решается путем применения этой группы лекарственных средств.

Биогенные стимуляторы.

Биогенные стимуляторы – вещества, которые образуются в изолированных тканях животного или растительного происхождения, помещенных в неблагоприятные для них условия (охладение, лишение света). Данный термин был предложен академиком В.П. Филатовым в конце 30-х гг XX века.

Классификация лекарственных средств из группы биогенных стимуляторов.

I.Хондропротекторы:

A.Средства, на основе гликозаминогликан-пептидного комплекса: румалон, глюкозамин;

B.Средства, на основе сульфатированных гликозаминогликанов: хондроитин сульфат. II. Собственно биостимуляторы:

A.Гидролизаты крови животных: солкосерил, активегин;

B.Препараты яда пчел: апизатрон;

C.Препараты растительного сырья: эхинацин, мадекассол;

D.Производные пелоидов: пелоидин.

Хондропротекторы

Хондропротекторы – лекарственные средства, которые влияют на обмен матрикса хрящевой ткани суставов путем усиления его синтеза или торможения резорбции.

Хрящевая ткань суставов состоит из клеток (хондроцитов, хондробластов) и межклеточного матрикса, который они образуют. Межклеточный матрикс представляет собой гель, построенный на основе биополимеров. В состав геля входят следующие молекулы:

Коллаген – фибриллярный («нитчатый») белок. В настоящее время описано 19 типов коллагена. Основными являются следующие 4 типа:

I тип – коллаген плотной соединительной ткани;

II тип – коллаген хрящей;

III тип – эмбриональный коллаген;

IV тип – коллаген базальных мембран эпителия.

Хрящевую ткань образуют молекулы коллагена II, VI, IX и XI типов. Коллаген II типа образует фибриллярную основу хрящевой ткани. Коллаген XI типа находится внутри этих фибрилл и регулирует процессы их сборки. Коллаген IX типа – прикрепляется к поверхности фибрилл и формирует как-бы «крючки» для сшивки фибрилл в сеть. Коллаген VI

220

типа образует микрофибриллы, которые перекидываясь от «крючка» к «крючку» сшивают фибриллы коллагена в сеть.

Гликозаминогликаны – линейные отрицательно заряженные гетерополисахариды. Основной представитель гликозаминогликанов – гиалуроновая кислота (несульфатированный гликозаминогликан). Она образует в хряще сеть, накоторую крепятся молекулы протеогликанов.

Протеогликаны (мукополисахариды) – сложные молекулы, которые состоят из 5-10% белка и 90-95% сульфатированных гликозаминогликанов. Основным протеогликаном хряща является агрекан – молекула типа «бутылочного ерша». В центре агрекана лежит нить корового белка, к которой крепятся молекулы хондроитин-сульфата ( 100 цепей) и

кератан-сульфата ( 30 цепей). Всего в хрящевой ткани до 10% агрекана. За счет большого числа сульфатных групп молекула агрекана имеет избыточный отрицательный заряд и окружена толстой гидратной оболочкой.

Таким образом, гель матрикса состояит из ячеистой сети фибрилл коллагена. Внутри ячеек сети – цепь гиалуроновой кислоты, на которую посажены агрекановые молекулы – они окружены гидратной оболочкой и удерживают воду в ячейках коллагеновой сети, обеспечивая, тем самым, рессорную функцию хряща (схема 7). При нагрузке на хрящ жидкость вытесняется до тех пор, пока давление набухания не уравновесит внешнюю нагрузку.

Схема 7. Строение и рессорная функция хряща. Слева показан хрящ в начальный момент действия внешней нагрузки. Молекулы гиалуроновой кислоты (ГУК) и агрекана (АК) лежат свободно, промежутки между ними заполнены водой гидратных оболочек. По мере вытеснения воды (справа) возникает противодействующая сила сжатия агрекановых молекул, которая уравновешивает внешнее давление на хрящ.

Помимо рассмотренных выше компонентов, хрящевой матрикс содержит также минорные вещества (см. таблицу 11). Процесс обновления матрикса хрящевой ткани протекает с постоянной скоростью, активность же процессов разрушения матрикса может регулироваться за счет балланса активаторов и ингибиторов резорбции хряща, краткая характеристика которых представлена в таблице 12.

 

 

Таблица 11. Минорные компоненты хряща и их роль.

 

 

 

 

Компонент

Функция

 

Малые протеогликаны:

 

 

декорин, фибромодуллин;

Присоединяются к коллагену II типа и ограничивают диаметр

 

 

фибрилл.

 

бигликан

Связан с фибронектином, подавляет миграцию клеток, их де-

 

 

ление, нейтрализуект активаторы резорбции (ФНО).

Неколлагеновые белки:

 

 

фибронектин

Обеспечивает взаимосвязь всех молекул матрикса, содержит

 

 

участки, активирующие интергрины (RGD-участки), которые

 

 

обеспечивают миграцию и удержание клеток в матриксе.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]