Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Билеты царев.docx
Скачиваний:
35
Добавлен:
12.02.2015
Размер:
168.45 Кб
Скачать

Билет №6.

  1. Расчет резонаторов методом эквивалентной схемы с сосредоточенными параметрами.

  2. Магнитное поле сплошного соленоида. Магнитные экраны. Бриллюэновское магнитное поле.

Использование: для получения пространства без магнитного поля, обеспечивающего повышение качества экранирования. Магнитный экран выполнен в виде оболочки с люком, причем оболочка расположена соосно с установленным вертикально кольцом постоянного магнита с осевой намагниченностью или двух расположенных подвижно относительно кольца оболочек, выполненных из композиционного или диамагнитного материала. Изобретение может применяться в медицине для снятия нагрузки в период магнитных бурь, а технике при производстве однородных постоянных магнитов, полупроводников, при производстве и настройке радиоэлектронной аппаратуры. 3 з.п ф-лы, 2 ил. Изобретение относится к измерительной технике и может быть использовано для получения пространства без магнитного поля, в котором производятся настройка и испытание, например, датчиков феррозондового типа радиоизмерительной аппаратуры. Известны магнитные экраны из ферромагнитных материалов, для эффективной работы которых используют, например, размагничивающую катушку индуктивности, намотанную на корпус, и источник питания. Сравнительно часто для уменьшения остаточного магнитного поля экран, выполненный из нескольких слоев ферромагнитного материала, снабжен дополнительной размагничивающей обмоткой. Недостатком подобных систем является обязательная связь экрана с источником электрической энергии, которая при этом используется с низкой эффективностью. Для снижения энергетических затрат находят применение экраны, выполненные из сверхпроводящего материала или содержащие сверхпроводящие обмотки. При этом существенно усложняется конструкция и исключается использование экрана в полевых условиях. В качестве прототипа использовано устройство экранированной комнаты для магнитных измерений, которое содержит каркас с закрепленным на нем многослойным ферромагнитным экраном, опорные колонны на фундаменте, приборы освещения. Однако в этом случае по мере необходимости при намагничивании слоев магнитным полем Земли к вершинам углов каждого слоя подключается источник питания. Таким образом, в этом как и в других случаях магнитное поле Земли играет отрицательную роль. Для защиты от него и создают различные экраны. Цель изобретения - повышение качества экранирования. Это достигается тем, что магнитный экран выполнен в виде оболочки с люком, причем оболочка расположена соосно с кольцом постоянного магнита с осевой намагниченностью или две расположенные подвижно относительно кольца оболочки, выполненные из композиционного или диамагнитного материала, например из меди.

Равновесный ленточный пучок в однородном продольном магнитном поле при полностью экранированном катоде аналогично осесимметричному тучку часто называют бриллюэновским ленточным потоком, а величины у0 и В0 - соответственно бриллюэновскими полутолщиной и магнитным полем.

Билет №7.

  1. Виды тороидальных резонаторов и структура поля в них.

Колебательный процесс в резонаторе, по существу, представляет собой стоячие электромагнитные волны, возникшие благодаря отражению волн от стенок резонатора. На рис.2 показаны силовые линии электрического и магнитного полей в цилиндрическом резонаторе, являющемся одним из простейших по своей конструкции. Электрические силовые линии идут от одного основания цилиндра к другому, а магнитные силовые линии в виде концентрических колец окружают электрическое поле. Такая структура поля является простейшей, но в объемных резонаторах могут существовать колебания и других видов, имеющие различную структуру поля.

Рис.3 - Виды тороидальных резонаторов

Исторически одним из первых был тороидальный резонатор (рис.3 а). Электрическое поле в нем сосредоточено главным образом в средней части между двумя дисками, а магнитные силовые линии расположены кольцами вокруг электрического поля. Однако резонатор по рис.3 а, сложен в изготовлении, и в настоящее время резонаторы такого типа делаются иной формы. Наиболее распространены тороидальные резонаторы, показанные на рис.3 б и в, называемые иначе коаксиальными. Действительно резонатор (рис.3 в) составлен из двух коаксиальных цилиндров и напоминает коаксиальную линию, короткозамннутую на одном конце, и имеющую некоторую емкость на другом конце. Но все же его нельзя назвать линией, так как он имеет размеры внутренней полости одного порядка в радиальном и осевом направлениях, а у линии длина должна быть значительно больше разности радиусов. Конечно, резкой границы между коаксиальным объемным резонатором и коаксиальной линией провести нельзя. Если у коаксиального объемного резонатора увеличить отношение высоты h к радиальному размеру r2 — r1 то он постепенно превратится в коаксиальную линию. В некоторых случаях применяются резонаторы, подобные изображенным на рис.3 б к в, но имеющие размер r2 —r1, значительно больше высоты h. Их называют резонаторами типа радиальной линии. Иногда применяются объемные резонаторы прямоугольной формы (в виде параллелепипеда). Возможно устройство резонаторов и многих других форм.

  1. Методы математического и компьютерного моделирования и проектирования электронно-оптических систем. Бриллюэновское магнитное поле.

1.Автоматизированный метод расчета , распределения электрического поля, .создаваемого электродами миниатюрных электростатических линз, основанный на аналитической модели;

2.Автоматизированный метод расчета траекторий и аберраций электронного пучка, формируемого миниатюрными ЭОС с наклонной и подвижной оптическими осями;

3.Разработка системы автоматизированного проектирования миниатюрных ЭОС с подвижной и наклонной оптической осью;

4.Разработка основ конструирования и технологии производства электронных линз для миниатюрных ЭОС с использованием разработанной системы автоматизированного проектирования.

Основными методами исследования является применение математического аппарата оптики пучков заряженных частиц, и в частности, включает применение метода возмущений для преобразования нелинейных дифференциальных уравнений траекторий движения заряженных частиц в электростатическом поле в систему линейных уравнений. Компьютерное моделирование проведено на основе пакета программ МаЙкас!, включающего методы аналитических преобразований, высокоточные методы решения дифференциальных уравнений и удобные методы визуализации результатов.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]