
- •Глава 5. Принцип Даламбера для смт
- •5.1. Принцип Даламбера для смт в двух формах
- •5.2. Вычисление главного вектора и главного момента сил инерции
- •5.3. Определение динамических реакций нмс, вращающейся относительно неподвижной оси
- •5.4. Алгоритм решения задач с помощью принципа Даламбера – схема алгоритма д54 пдс с комментариями и примерами
- •Комментарии
- •Пример 1
- •Пример 2
5.4. Алгоритм решения задач с помощью принципа Даламбера – схема алгоритма д54 пдс с комментариями и примерами
Комментарии
К.2. Рассматриваемый объект принимается либо за МТ, либо за МС, указывается система отсчета, в которой исследуется движение. В случае МС выделяются МТ, АТТ или НМС, входящие в нее.
К.3.4. Для определения ускорений, входящих в формулы для сил инерции МТ, используется алгоритм К01 КМТ (Ч.1 Кинематика) в случае, когда заданы кинематические параметры МТ, и алгоритм Д49 КЭС в случае, когда заданы силы, действующие на МТ.
К.5. На чертеже изображается силовая схема, т. е. рисуются все активные силы, действующие на МТ, силы реакции связи и силы инерции.
К.6. Записывается принцип Даламбера для МТ, используя полученную силовую схему.
К.7. В случае МС или НМС на чертеже изображается силовая схема, на которой рисуются все внешние силы и моменты, действующие на них, в том числе внешние пассивные силы и моменты (реакции связи), силы инерции и моменты сил инерции.
В частных случаях движения – поступательном и вращательном движениях НМС используются формулы для отыскания главного вектора и главного момента сил инерции.
К.8. Записывается вторая форма принципа Даламбера для МС.
К.9. Векторные соотношения 6 и 8 проектируются на оси декартовой системы координат или естественные оси.
К.10. Определяются неизвестные параметры и чаще всего динамические реакции связи.
Пример 1
Гладкое кольцо массы m скользит без трения по дуге окружности радиуса , расположенной в вертикальной плоскости. К кольцу прикреплена пружина жесткости с, закрепленная в точке D. В начальный момент кольцу, находящемуся в положении B0, определяемому углом0, сообщена скорость V0, направленная по касательной к окружности. Пружина в начальный момент не растянута.
Определить реакцию связи окружности в положении B кольца, указанном на рис. 40 (уголзадан).
Рис. 40
3Заданы силы.
4Д49 КЭС
3
µ= 3.
4 4
= 1
.
5
4
5
j= 3
4 5
6
8 9 10,
11
12
5
Силовая схема представлена на рис. 40.
6.
9 Проектируем соотношение6на нормальное направление:
10
Подставляются найденные величины
и определяется:
Пример 2
Вертикальный вал массы
кг, закрепленный подпятником О и подшипником В, вращается с постоянной угловой скоростью10 с–1. МТ массы
кг прикреплена к валу стержнем массы
кг под углом600к нему. Стержень массы
кг, параллельный валу, присоединен в середине к валу невесомым стержнем под углом300. Все три стержня расположены в одной плоскости (рис. 41). Геометрические размеры:
, а0,3 м,b 0,5 м, c 0,2м.
Рис. 41
Определить реакции подпятника О и подшипника В.
Начало координат берем в точке О, ось Оу направлена по валу, а ось Ох лежит в плоскости стержней и вращается вместе с валом.
7НМС состоит из МТ массыm1и трех АТТ: двух стержней массамиm2,m3и вала массыm4.
Силовая схема состоит из четырех сил
тяжести:
,
реакций опор в точках О и В:
,
силы инерции МТ –
и двух главных векторов сил инерции
весомых стержней –
(рис. 42).
Так как вал вращается равномерно, то МТ и элементы стержней имеют только нормальные составляющие ускорения, направленные к оси вращения.
Для МТ сила инерции определится соотношением:
.
Рис. 42
Модуль равнодействующей сил инерции элементарных частиц стержня массы m2определяется соотношением
.
Точка приложения равнодействующей
не находится в центре масс стержня С2,
так как эпюра сил инерции элементарных
частиц стержня (рис. 42) представляет
собой треугольник.
Линия действия
пройдет через точку К приложения
равнодействующей параллельных сил
инерции элементарных частиц стержня
ЕС1(Ч.1 Статика). Положение точки
К определяется соотношением
.
Модуль равнодействующей сил инерции элементарных частиц стержня массы m3определяется соотношением
.
Точка приложения равнодействующей
находится в центре масс стержня С3,
так как эпюра сил инерции элементарных
частиц стержня (рис. 42) представляет
собой прямоугольник.
8 Принцип Даламбера для плоской системы сил имеет вид:
.
9 Спроектировав первое соотношение8на оси координат и записав второе соотношение8 с учетом силовой схемы (рис. 42), получим:
Подставив в эти уравнения значения сил инерции, получим систему уравнений с тремя неизвестными:
10Подставив в эти уравнения конкретные значения параметров (m1,m2,m3,m4,a,b,c,,1,2,,) и разрешив полученную систему уравнений относительно неизвестных реакций опор, получимXО,YО,XB:
Н,
Н,
Н.