Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
отчет.doc
Скачиваний:
17
Добавлен:
12.02.2015
Размер:
340.48 Кб
Скачать

2 Способ комплексного использования твёрдых топлив в пгу с совместным производством энергии и вторичной товарной продукции

Изобретение относится к способу экологически чистого комплексного использования низкосортных высокореакционных углей (бурых и каменных с высоким выходом летучих) в экологически чистых энергетических установках комбинированного цикла с высокой тепловой экономичностью. В основе способа - комплексная многостадийная переработка твердых топлив с использованием технологии кипящего слоя, интегрированная в термодинамический цикл парогазовой установки. Изобретение позволяет обеспечить наивысшую эффективность полезного использования топлива, гибкость к изменениям рыночной конъюнктуры и высокие технико-экономические показатели комплекса.

Изобретение относится к способу экологически чистого комплексного использования низкосортных высокореакционных углей (бурых и каменных с высоким выходом летучих) в экологически чистых энергетических установках комбинированного цикла с высокой тепловой экономичностью путем многостадийного процесса переработки, включающего высокоскоростной пиролиз углей с выделением смол и газификацию полукокса, и может быть использовано в энергетике для совместного производства энергии и побочных товарных продуктов в виде облагороженного твердого, жидкого котельного и высокочистых синтетических моторных топлив.

Известен способ внутрицикловой термической переработки бурых углей методом термоконтактного коксования путем пиролиза твердым теплоносителем под низким давлением с получением тепловой и электрической энергии в парогазовой установке и побочного продукта в виде активированного угля из полукокса [2].

Недостатками данного способа являются:

– проведение процесса пиролиза и газификации полукокса при давлении, близком к атмосферному, что увеличивает габариты и стоимость установки и затрудняет эффективную интеграцию с парогазовым циклом;

– трудность достижения однородного перемешивания угля с твердым сыпучим теплоносителем для крупных промышленных установок;

– большое количество и длина технологических связей для передачи сыпучего материала (полукокса, горячего теплоносителя) от агрегата к агрегату, что усложняет эксплуатацию и снижает надежность системы;

– производство только одного побочного продукта – активированного угля, емкость рынка для которого может быть ограничена, что определяет единичную мощность и потребность в подобных установках.

Данный способ получил широкое признание в мире под названием «Технология внутрицикловой газификации» в отечественной технической литературе и integrated gasification combined cycle (IGCC) в зарубежной и вышел на стадию коммерческой реализации в ряде западных стран. Недостатком данного способа является то, что органическая масса топлива целиком конвертируется в низкокалорийный газа, без извлечения побочных продуктов, а полученный очищенный газ с достаточно высоким содержанием водорода и окиси углерода используют только для производства электроэнергии, хотя мог бы использоваться для каталитического синтеза ценных продуктов. Кроме того, несмотря на возможность достижения высокого КПД и высоких экологических стандартов, как показывает мировой опыт, сроки окупаемости инвестиций при производстве одной только электроэнергии относительно велики, что связано со сложностью и высокой капиталоемкостью оборудования для газификации и очистки газов.

Предлагаемое изобретение решает указанную техническую задачу, обеспечивая совместно с производством энергии возможность получения побочных товарных продуктов с высоким рыночным потенциалом и тем самым существенное улучшение технико-экономических показателей и гибкости к изменениям рыночной конъюнктуры.

Поставленная техническая задача решается тем, что: в способе экологически чистого комплексного использования твердых топлив, преимущественно низкосортных высокореакционных углей (бурых и каменных с высоким выходом летучих), интегрированном в тепловой цикл парогазовой энергетической установки с целью совместного производства низкокалорийного очищенного газа для генерации энергии и побочных товарных продуктов в виде облагороженного твердого, жидкого котельного и высокочистых синтетических моторных топлив, включающем парогазовую энергетическую установку (ПГУ), дробление и сушку угля, окислительную газификацию с получением низкокалорийного генераторного газа с утилизацией тепла экзотермических реакций в цикле энергетической установки, очистку газа от твердых частиц и соединений серы и использование очищенного газа в качестве топлива парогазовой энергетической установки, часть воздуха после компрессора высокого давления ПГУ используют для трехступенчатого противоточного процесса термохимической переработки угля, в котором в первой ступени подсушенный и измельченный исходный уголь подвергают пиролизу за счет тепла продуктов газификации, поступающих из второй ступени, с образованием продуктов пиролиза в виде паров угольных смол и пирогаза, которые выводят из первой ступени вместе с продуктами газификации с последующим выделением жидких смол для получения побочных продуктов и очищенного энергетического газа для производства энергии в ПГУ, и полукокса, который направляют на переработку во вторую ступень путем окислительной газификации смесью воздуха и продуктов сгорания, поступающей из третьей ступени, полученный генераторный газ направляют в первую ступень на пиролиз, угольную золу, содержащую сульфиды металлов с остатками углерода, подвергают дожиганию в третьей ступени с использованием в качестве окислителя части воздуха из компрессора высокого давления ПГУ, в результате чего догорает углерод, при этом сульфиды металлов окисляют до экологически безопасных сульфатов, охлаждают и выводят из цикла золу с утилизацией физического и химического тепла в процессе газификации полукокса второй ступени, для интенсификации процессов газификации и пиролиза, а также для увеличения выхода жидких фракций во всех ступенях переработки используют технологию кипящего и циркулирующего кипящего слоя, очистку парогазовой смеси, полученной после трехступенчатой переработки угля, содержащей пары угольных смол, частицы золы и полукокса, осуществляют с охлаждением газа и конденсацией паров угольных смол путем двухстадийной промывки жидкими смолами, циркулирующими после промывки через теплообменники - охладители с различными уровнями температур при промывке, при этом в первой по ходу парогазовой смеси стадии при более высокой температуре конденсируют и извлекают более тяжелые фракции смол вместе с основной частью уловленных твердых частиц, которые направляют для использования в качестве связующего при производстве угольных брикетов, а во второй стадии, при более низкой температуре, конденсируют и извлекают более легкие и чистые фракции угольных смол, которые используют в качестве основы для производства жидких котельных топлив, при этом тепло от конденсации смол и охлаждения парогазовой смеси утилизируют в паротурбинном цикле ПГУ.

Схема на (рис. 2) включает блок подготовки угля (дробление, сортировка, сушка) 1, шлюз-бункерную систему подачи дробленого угля 2 в реактор многостадийной переработки угля 3, работающий под давлением, шлюз-бункерную систему вывода золы 4 из реактора, двухкаскадную систему фракционной конденсации смол пиролиза: 5 – тяжело-средних фракций с температурой начала кипения выше 320 – 350 С, 6 – легко-средних фракций с температурой начала кипения ниже 320 С, систему очистки газа от соединений серы 7, газотурбинную установку с цикловым воздушным компрессором 8 и бустерным (подкачивающим) компрессором 9, камерой сгорания 10, газовой турбиной 11, электрогенератором 12, паровую турбину 13, котел-утилизатор тепла выхлопных газов ГТУ 14, блок брикетирования 15, блок стабилизации и кондиционирования жидкого котельного топлива 16, блок каталитического синтеза 17.

Работа системы осуществляется следующим образом:

Дробленый и подсушенный до гигроскопической влажности уголь из системы углеподготовки 1 через шлюз-бункерную систему подачи 2 поступает в комбинированный реактор пиролиза-газификации 3. Реактор включает в себя 3 ступени в одном агрегате: пиролиза, газификации, дожигания. Каждая может осуществляться в кипящем или в циркулирующем кипящем слое. Уголь из шлюз-бункеров поступает в ступень пиролиза, греющей и псевдоожижаюшей средой в которой, главным образом, являются продукты газификации полукокса. Пиролиз идет при температурах 570 – 620°С (температура зависит от свойств конкретного угля). Паро-газовая фаза продуктов пиролиза смешивается с псевдоожижающим газом и выводится из реактора 3 в систему фракционной конденсации 5-6. Твердая фаза - полукокс в плотном потоке – при указанной температуре полностью или частично поступает в ступень газификации. Предусматривается возможность дозирования в ступень газификации кальциевого сорбента для поглощения серы. Минеральная часть угля с остатками полукокса от газификации поступает в ступень дожигания, где оставшийся углерод дожигают в воздухе. В качестве окислителя и псевдоожижающей среды используют сжатый в компрессоре ГТУ 8 и в бустерном компрессоре 9 воздух, подогретый за счет сжатия до температуры 300 – 400°С. Продукты сгорания вместе с воздухом являются окислителем и псевдоожижающей средой ступени газификации. Зольный остаток из ступени дожигания представляет собой смесь окислов, не содержащую сульфидов и не образующую токсичных стоков при захоронении в отвалах. Вывод золы из реактора осуществляют через шлюз-бункерную систему 4.

Парогазовую смесь из реактора выводят через систему циклонных сепараторов для отделения основной массы твердых частиц. Отсепарированные частицы возвращают в ступень газификации. Парогазовую смесь промывают жидкой смолой пиролиза в контактных конденсаторах 5 и 6. Каждый из них представляет собой скруббер с циркуляционным контуром, включающим насосы для прокачки смолы в контуре, теплообменники для охлаждения смолы и орошающие устройства для организации эффективного прямого контакта капель с парогазовой смесью. Парогазовая смесь движется снизу вверх, контактируя с каплями охлажденной смолы, движущимися под действием силы тяжести противотоком. При этом на поверхности капель происходит конденсация паров смолы. Параллельно осуществляется очистка газа от твердых частиц. В теплообменнике конденсатора 5 тепло передают на генерацию насыщенного пара с давлением около 1,2 МПа и температурой 320 °С для паровой турбины ПГУ. При этом конденсируются тяжелые фракции смол с ТНК выше 320°С. Эти фракции, загрязненные золой и частицами кокса, выводят из контура в блок производства угольных брикетов 15, где их используют в качестве связующего.

В теплообменнике конденсатора 6 охлаждающей средой служит питательная вода паротурбинного цикла с температурой 120 – 150 °С. В нем конденсируются легкие и средние фракции смол пиролиза, которые выводят из контура в блок производства жидкого котельного топлива 16, где производят дегазацию смол и их стабилизацию.

После конденсаторов, если это необходимо, газ подвергают очистке от сероводорода и других соединений серы в системе сероочистки 7. Наиболее целесообразно для этого использовать хемосрбционный процесс типа процесса Стретфорда, где сорбентом служит раствор поташа в воде. Очистку производят при температуре в абсорбере около 120 °С, при которой не происходит конденсации водяных паров, и в результате не образуются жидкие стоки, очистка которых требует дополнительных затрат.

Очищенный газ поступает либо непосредственно на сжигание в камеру сгорания 10 газотурбинной установки ПТУ, либо сперва в блок однопроходного каталитического синтеза метанола (диметилового эфира, бензина) 17, отработанный синтез-газ после которого поступает на сжигание в камеру сгорания ГТУ 10.

Предлагаемый способ обеспечивает эффективное использование физического и химического тепла топлива и энергии избыточного давления газовых потоков в цикле парогазовой установки [4].

Рис. 2 ПГУ с совместным производством энергии и вторичной товарной продукции [4]:

1 – блок подготовки угля; 2 – шлюз-бункерная система подачи дробленого угля; 3 – реактор многостадийной переработки угля; 4 – шлюз-бункерная система вывода золы; 5, 6 – двухкаскадная система фракционной конденсации смол пиролиза; 7 – систему очистки газа от соединений серы; 8 – цикловым воздушным компрессором; 9 ­ бустерным (подкачивающим) компрессором; 10 – камера сгорания; 11 – газовая турбина; 12 – электрогенератор; 13 – паровая турбина; 14 – котел-утилизатор тепла выхлопных газов ГТУ; 15 – блок брикетирования 16 – блок стабилизации и кондиционирования жидкого котельного топлива; 17 – блок каталитического синтеза; У – уголь; В – воздух; СЖТ – сжиженное топливо; КТ – котельное топливо.

Заключение

В ходе эксплуатационной практики, мною были изучены различные схемы ПГУ на твёрдом топливе и инновации в данном направлении за последние несколько лет. Из всего изученного можно сделать следующие выводы:

1 В ранних схемах ПГУ на твердом топливе, уголь превращался в пыль и подавался непосредственно в камеру сгорания ГТУ. В новых схемах уголь проходит через контур газификации и превращается в газообразное топливо, и лишь потом поступает в камеру сгорания.

2 В более ранних схемах ПГУ с контуром газификации очистка от серосодержащих соединений происходила в отдельном фильтрующем модуле. Теперь очистка производится непосредственно в пиролизере при помощи различных методов.