
- •1. Предмет и задачи химии. Место химии в системе естественных наук.
- •18. Реакции многостадийные,
- •19. Закон действующих масс для скорости реакции. Константа скорости реакции.
- •21. Порядок реакции. Уравнение кинетики 1-го и 2-го порядка. Период полупревращения.
- •22. Зависимость скорости реакции от температуры. Температурный коэффициент скорости реакции.
- •23. Уравнение Аррениуса. Энергия активации. Теория активных соударений.
- •27. Активация и ингибирование ферментов.
- •25. Понятие о кинетики сложных реакций. Параллельный, последовательные, сопряженные и цепные реакции.
- •28. Роль растворов в жизнедеятельности организмов. Вода как растворитель.
- •29. Изоэлектрическое состояние и изоэлектрическая точка амфолитов
- •30. Концентрация растворов и способы их выражения.
- •31. Сольватная теория растворов.
- •32. Растворимость газов в жидкостях. Кессонная болезнь.
- •33. Растворимость жидкости и твердых тел в жидкостях. Гидраты и кристаллогидраты.
- •35. Вязкость растворов. Аномальная вязкость растворов вмс.
- •34. Растворы вмс. Набухание. Общая характеристика растворов вмс.
- •36. Удельная, приведенная, относительная и характеристическая вязкость.
- •37. Вязкозиметрическое определение молекулярной массы полимеров.
- •38. Вязкость крови и других биологических жидкостей.
- •39. Коллигативные свойства растворов.
- •40. Относительное понижение давления насыщенного пара и закон Рауля. Идеальные растворы.
- •41. Понижение температуры замерзания и повышение температуры кипения, зависимость их от концентрации раствора.
- •42. Осмос и осмотическое давление. Закон Вант Гоффа
- •43. Осмотическое давление в растворах биополимеров. Мембранное равновесие Доннане.
- •44. Роль осмоса и осмотическое давление в биологических системах.
- •45. Плазмолиз и гемолиз.
- •46. Растворы слабых и сильных электролитов. Степень и константа диссоциации слабых электролитов.
- •48. Электролиты в организме человека. Электролитический состав крови.
- •49. Понятие о водно – солевом обмене. Антагонизм и синегизм ионов.
- •52. Диссоциация воды. Ионное производство воды. Водный показатель.
- •53. Интервалы значения pH для различных жидкостей человеческого организма.
- •54. Буферные системы их классификация и механизм действия. Емкость буферных систем.
- •55. Буферные системы крови.
- •56. Уравнение Гендерсона Гассельбаха.
- •57. Понятие о кислотно-щелочном состоянии крови.
- •61. Кислотно-основное титрование. Кривые титрования. Точка эквивалентности. Выбор индикатора. Применение в медицине.
- •58. Гидролиз солей. Степень гидролиза в биологических процессах.
- •62. Реакция осаждения и растворения. Производные растворимости. Аргентометрия. Применение в медицине.
- •63. Окислительно-восстановительные реакции. Роль окислительно-восстановительных процессов в организме. Окислительно-восстановительный потенциал. Уравнение Нернста.
- •65. Определение направления окислительно-восстановительных реакций по стандартным значениям свободной энергии образования реагентов и по величинам окислительно-восстановительных потенциалов.
- •66. Оксидометрия, иодометрия, перманганатометрия. Применение в медицине.
- •67. Квантово – механическая модель атома.
- •68. Электронное облако орбиталь.
- •69. Характеристика электрического состояния электрона системой квантовых чисел: главное, орбитальное, магнитное и спиновое квантовые числа.
- •72. Метод валентных связей. Механизм образования валентных связей.
- •70. Принцип Паули. Правило Хунда. Основное и возбужденное состояние атома.
- •73.Виды связей. Кратность связи.
- •74. Насыщенность, направленность и длина связи.
- •75. Понятие о гибридизации атомных орбиталей. Геометрия молекул.
- •76. Ионная связь как предельно поляризованная ковалентная связь.
- •77. Метод молекулярных орбиталей. Связывающие и разрыхляющие орбитали.
- •78. Водородная связь. Молекулярная и внутри молекулярная водородная связь.
- •79. Комплексные соединения. Координационная теория Вернера.
- •80. Центральный атом, лиганды, координационное число центрального атома.
- •82. Внутрикомплексные соединения. (хелаты).
- •83. Комплексоны и их применение в медицине.
- •85.Реакция комплексообразования.
- •84. Номенклатура комплексных соединений.
- •86. Ионные равновесия в растворах комплексных соединений.
- •87. Константа нестойкости и устойчивости комплексных ионов.
- •88. Вода и её физико-химические свойства. Значение воды для биосферы и жизненности организмов. Человек и биосфера.
- •102. Общая характеристика s – элементов.
- •103. Общая характеристика p - элементов.
77. Метод молекулярных орбиталей. Связывающие и разрыхляющие орбитали.
В методе молекулярных орбиталей (МО) к рассмотрению электронной структуры молекулы подходят так же, как и к многоэлектронному атому. Логичность использования одной физической модели вытекает из одинаковой природы электронов в атомах и молекулах, а также их взаимодействий с ядрами и между собой. Основные принципы метода МО: 1.Молекула рассматривается как совокупность ядер и электронов, где каждый электрон движется в поле остальных электронов и всех ядер. 2.Состояние электрона описывается волновой функцией, характеризуемой определенным набором квантовых чисел. Эта функция называется молекулярной орбиталью (МО). В отличие от одноцентровой атомной орбитали (АО - электрон в поле одного ядра) молекулярная орбиталь в общем случае многоцентровая. Как и для электрона в атоме, квадрат модуля волновой функции определяет плотность вероятности нахождения электрона или плотность электронного облака. 3. Каждой МО соответствует определенная энергия Е. 4. Совокупность МО молекулы, занятых электронами, называется электронной конфигурацией молекулы. Она строится на основе фундаментальных положений - принципа наименьшей энергии (электрон занимает в молекуле свободную орбиталь с наименьшей энергией), принципа Паули (на одной МО не может находиться более двух электронов, при этом спины их должны быть антипараллельны) и правила Хунда. Следовательно, для описания электронной конфигурации молекулы с 2п электронами требуется п молекулярных орбиталей. Молекулярная орбиталь, образующаяся при подобном взаимодействии, характеризуется уменьшением абсолютной величины волновой функции в межъядерном пространстве по сравнению с ее значением в исходных атомах: на оси связи появляется даже точка, в которой значение волновой функции, а, следовательно, и ее квадрата, обращается в нуль. Это означает, что в рассматриваемом случае уменьшится и плотность электронного облака в пространстве между атомами. В результате притяжение каждого атомного ядра в направлении к межъядерной области пространства окажется более слабым, чем в противоположном направлении, т. е. возникнут силы, приводящие к взаимному отталкиванию ядер. Здесь, следовательно, химическая связь не возникает; образовавшаяся в этом случае МО называется разрыхляющей, а находящиеся на ней электроны — разрыхляющими электронам и.
78. Водородная связь. Молекулярная и внутри молекулярная водородная связь.
Если атом водорода связан ковалентной связью с каким-либо электроотрицательным элементом, то он может одновременно притягиваться к другому атому, имеющему высокую электронную плотность. Энергия такого притяжения составляет 4-40 кДж/моль, т.е. на порядок меньше энергии ковалентной связи. Связь, возникающая в итоге, получила название, водородной (Н-связь). Атом водорода имеет очень малый размер и частичный положи тельный заряд из-за связи с электроотрицательным атомом. Водородная связь образуется вследствие.внедрения атома водорода в электронную оболочку атома с высокой электроотрицательностью и обычно имеющего неподеленную электронную пару. В качестве таких атомов могут выступать фтор, кислород, азот и, в меньшей степени, хлор и сера Небольшая энергия водородных связей приводит к тому, что они легко возникают и разрушаются. Длина водородной связи заметно превосходит длину ковалентной связи. Так, например, если длина ковалентной связи О-Н составляет 0.97 А, то водородная связь О-Н в воде имеет длину 1.75 А. Чтобы подчеркнуть отличие водородной связи от ковалентной, ее обозначают тремя точками. Водородная связь широко распространена и играет важную роль при ассоциации молекул, в процессах растворения и диссоциации, образования кристаллогидратов и многих других. Образование водородной связи может существенно изменить физические свойства вещества (теплоты плавления и испарения, температуры кипения, вязкость, твердость и др.). Так, например, аномально высокие точки кипения НР, NНз и Н2O объясняются ассоциацией этих молекул в агрегаты за счет водородных связей. Наряду с межмолекулярной водородной связью существует также и внутримолекулярная водородная связь. Образование последней возможно при одновременном наличии в одной молекуле электроноакцепторной группы Х-Н и электронодонорного атома У, причем расстояние между атомами Н и У не должно превышать обычной длины водородной связи (1.6-2.0 А). Примером может служить биомолекула салициловой кислоты. Устойчивости такой связи благоприятствует образование шес-тичленного цикла, в котором нет деформации валентных углов. Следует отметить, что только замыкание пяти- или шестичленных циклов удовлетворяет стерическим требованиям возникновения водородной связи.